已知函數(shù).f(x)=
(
1
2
)
n
f(x+1)     (x<4)
(x≥4)
,則f(2+log23)的值等于( 。
A、
3
8
B、
1
24
C、
1
12
D、
1
8
分析:本題中的函數(shù)是一個(gè)分段函數(shù),先確定2+log23的取值范圍,再選擇相應(yīng)的解析式代入求值
解答:解:∵f(x)=
(
1
2
)
n
f(x+1)     (x<4)
(x≥4)
,2+log23∈(3,4)
∴f(2+log23)=f(3+log23)=f(log224)=(
1
2
)
log224
=2-log224=(2)log2
1
24
=
1
24

故選B.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì),解題的關(guān)鍵是正確理解對(duì)數(shù)的運(yùn)算性質(zhì)及所給的函數(shù)的解析式,熟練運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值是本題順利解決的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的反函數(shù).定義:若對(duì)給定的實(shí)數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱(chēng)y=f(x)滿(mǎn)足“a和性質(zhì)”;若函數(shù)y=f(ax)與y=f-1(ax)互為反函數(shù),則稱(chēng)y=f(x)滿(mǎn)足“a積性質(zhì)”.
(1)判斷函數(shù)g(x)=x2+1(x>0)是否滿(mǎn)足“1和性質(zhì)”,并說(shuō)明理由;
(2)求所有滿(mǎn)足“2和性質(zhì)”的一次函數(shù);
(3)設(shè)函數(shù)y=f(x)(x>0)對(duì)任何a>0,滿(mǎn)足“a積性質(zhì)”.求y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如圖所示,則方程f[g(x)]=0有且僅有
6
個(gè)根;方程f[f(x)]=0有且僅有
5
個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)已知函數(shù)y=f(x)的圖象是折線(xiàn)段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函數(shù)y=xf(x)(0≤x≤1)的圖象與x軸圍成的圖形的面積為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),x∈R,有下列4個(gè)命題:
①若f(1+2x)=f(1-2x),則y=f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng);
②y=f(x-2)與y=f(2-x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng);
③若y=f(x)為偶函數(shù),且y=f(2+x)=-f(x),則y=f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng);
④若y=f(x)為奇函數(shù),且f(x)=f(-x-2),則y=f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng).
其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+1.設(shè)f(x)的反函數(shù)是y=g(x),則g(-28)=
-3
-3

查看答案和解析>>

同步練習(xí)冊(cè)答案