(本題滿分14分) 已知是方程的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001842900433.png" style="vertical-align:middle;" />.
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設(shè)函數(shù),
若對(duì)任意的,總存在,使得成立,
求實(shí)數(shù)的取值范圍.
;⑵只需證>0.⑶。

試題分析:(1)
……………4分
(2)
是方程的兩個(gè)不等實(shí)根
即是方程(拋物線開口向下,兩根之內(nèi)的函數(shù)值必為正值)
∵當(dāng)……………7分

>0.
∴函數(shù)在其定義域上是增函數(shù)……………9分
(3)由題意知:g(x)的值域是f(x)值域的子集。
由(1)知,f(x)的值域是,

x


-m

m



 
+
0
-
0
+
 


遞增
極大值g(-m)
遞減
極小值g(m)
遞增

顯然,
∴欲使g(x)的值域是f(x)值域的子集
只需
解得:……………14分
點(diǎn)評(píng):做本題的關(guān)鍵是分析出“在(1)的條件下,設(shè)函數(shù), 若對(duì)任意的,總存在,使得成立”的含義,其含義為“(x)的值域是f(x)值域的子集”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知為定義在上的奇函數(shù),當(dāng)時(shí),;
(1)求上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知映射,在映射的原象是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于函數(shù),給出下列四個(gè)命題:①該函數(shù)是以為最小正周期的周期函數(shù);②當(dāng)且僅當(dāng) (k∈Z)時(shí),該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于 (k∈Z)對(duì)稱;
④當(dāng)且僅當(dāng) (k∈Z)時(shí),0<.
其中正確命題的序號(hào)是_______   (請(qǐng)將所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),寫出數(shù)列的前5項(xiàng);
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)函數(shù)為奇函數(shù),且在上為增函數(shù),  , 若對(duì)所有都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12)
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個(gè)矩形的草坪,并建立如圖平面直角坐標(biāo)系,且,,另外的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測(cè)量, ,.
(1)求直線的方程;
(2)應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?并求最大面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,
若函數(shù)不存在零點(diǎn),則的范圍是 (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案