(08年濰坊市三模文)(14分)如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD,BC.橢圓CA、B為焦點且經(jīng)過點D

  (1)建立適當坐標系,求橢圓C的方程;

 

 。2)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

解析:(1)如圖,以AB所在直線為x軸,AB中垂線為y軸建立直角坐標系,A(-1,0),B(1,0)

  設橢圓方程為:

  令 ∴

  ∴ 橢圓C的方程是:

 。2) lAB時不符合,

  ∴ 設l

  設M),N,,

  ∵   ∴ ,即,

  ∴ l,即 經(jīng)驗證:l與橢圓相交,

  ∴ 存在,lAB的夾角是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年西安市第一中學五模理)(12分) 已知長度為的線段的兩端點在拋物線上移動,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年周至二中三模理) 已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年濰坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年濱州市質檢三文)(12分)已知函數(shù).

   (I)當m>0時,求函數(shù)的單調遞增區(qū)間;

   (II)是否存在小于零的實數(shù)m,使得對任意的,都有,若存在,求m的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案