試題分析:橢圓
中
,由橢圓定義知
點評:橢圓定義:橢圓上的點到兩焦點的距離之和等于定值
,在求解橢圓上的點到焦點的距離時,要注意定義的應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知有相同兩焦點
的橢圓
和雙曲線
,
是它們的一個交點,則
的形狀是 ( )
A.銳角三角形 | B.直角三角形 | C.鈍有三角形 | D.等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
.
(Ⅰ)判斷曲線
在
的切線能否與曲線
相切?并說明理由;
(Ⅱ)若
求
的最大值;
(Ⅲ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
直角坐標平面上,
為原點,
為動點,
,
. 過點
作
軸于
,過
作
軸于點
,
. 記點
的軌跡為曲線
,
點
、
,過點
作直線
交曲線
于兩個不同的點
、(點
在
與
之間).
(1)求曲線
的方程;
(2)是否存在直線
,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
Δ
兩個頂點
的坐標分別是
,邊
所在直線的斜率之積等于
,求頂點
的軌跡方程,并畫出草圖。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,設(shè)拋物線方程為
,
為直線
上任意一點,過
引拋物線的切線,切點分別為
.
(1)求證:
三點的橫坐標成等差數(shù)列;
(2)已知當(dāng)
點的坐標為
時,
.求此時拋物線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)橢圓
和雙曲線
的公共焦點為
,
是兩曲線的一個交點,則
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
為拋物線
的焦點,點
為拋物線內(nèi)一定點,點
為拋物線上一動點,
最小值為8.
(1)求該拋物線的方程;
(2)若直線
與拋物線交于
、
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的焦點坐標是
查看答案和解析>>