科目:高中數(shù)學 來源: 題型:解答題
已知圓 C方程為.
(1)若圓C與直線相交于M、N兩點,且OM⊥ON(O為坐標原點),求m;
(2)在(1)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓內(nèi)一定點,為圓上的兩不同動點.
(1)若兩點關于過定點的直線對稱,求直線的方程.
(2)若圓的圓心與點關于直線對稱,圓與圓交于兩點,且,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.與公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:,直線.
(1)若直線與圓C相切,求實數(shù)b的值;
(2)是否存在直線,使與圓C交于A、B兩點,且以AB為直徑的圓過原點.如果存在,求出直線的方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x
-4)2+(y-5)2=4.
(1)若點M∈⊙ C1, 點N∈⊙C2,求|MN|的取值范圍;
(2)若直線l過點A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程;
(3)設P為平面上的點,滿足:存在過點P的無數(shù)多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2= 20的兩條漸近線圍成的三角形的面積等于,則拋物線的方程為
A.y2=4x | B.y2=8x | C.x2=4y | D.x2=8y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com