【題目】已知函數(shù)f(x)= 為偶函數(shù).
(1)求實(shí)數(shù)t值;
(2)記集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[a,b](a>0,b>0)時(shí),若函數(shù)f(x)的值域?yàn)閇2﹣ ,2﹣ ],求實(shí)數(shù)a,b的值.

【答案】
(1)解:∵f(x)是偶函數(shù),

= ,

∴2(t﹣2)x=0,

∵x是非0實(shí)數(shù),故t﹣2=0,解得:t=2


(2)解:由(1)得,f(x)=

∴E={y|y=f(x),x∈{1,2,3}}={﹣3,0, },

而λ=lg22+lg2lg5+lg5﹣1=lg2+lg5﹣1=0,

∴λ∈E;


(3)解:∵f(x)=1﹣

∴f(x)在[a,b]遞增,

∵函數(shù)f(x)的值域是[2﹣ ,2﹣ ],

,

∵b>a>0,

解得:a=1,b=4.


【解析】(1)根據(jù)函數(shù)的奇偶性求出t的值;(2)由(1)求出f(x)的解析式,求出E的元素,求出λ的值,判斷即可;(3)根據(jù)函數(shù)的單調(diào)性得到關(guān)于a,b的方程組,解出即可.
【考點(diǎn)精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】F1 , F2分別是雙曲線 =1(a,b>0)的左右焦點(diǎn),點(diǎn)P在雙曲線上,滿足 =0,若△PF1F2的內(nèi)切圓半徑與外接圓半徑之比為 ,則該雙曲線的離心率為(
A.
B.
C. +1
D. +1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤ ,|φ2|≤ . 命題①:若直線x=φ是函數(shù)f(x)和g(x)的對(duì)稱軸,則直線x= kπ+φ(k∈Z)是函數(shù)g(x)的對(duì)稱軸;
命題②:若點(diǎn)P(φ,0)是函數(shù)f(x)和g(x)的對(duì)稱中心,則點(diǎn)Q( +φ,0)(k∈Z)是函數(shù)f(x)的中心對(duì)稱.(
A.命題①②都正確
B.命題①②都不正確
C.命題①正確,命題②不正確
D.命題①不正確,命題②正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)集R,集合A={x|1<x<3},集合B={x|y= },則A∩(RB)=(
A.{x|1<x≤2}
B.{x|1<x<3}
C.{x|2≤x<3}
D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動(dòng).
(1)求從該班男女同學(xué)在各抽取的人數(shù);
(2)從抽取的5名同學(xué)中任選2名談此活動(dòng)的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B、P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)設(shè)∠AOP=θ( ≤θ≤ ), = + ,四邊形OAQP的面積為S,f(θ)=( 2+2S2 ,求f(θ)的最值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣x2 , 若存在實(shí)數(shù)a,b,使f(x)在[a,b]上的值域?yàn)閇 ],則ab=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域?yàn)閇 , ],則區(qū)間[m,n]長(zhǎng)度的最大值為(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=log2(2+|x|)﹣ ,則使得f(x﹣1)>f(2x)成立的x取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案