【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時(shí)得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當(dāng)且僅當(dāng)adbc(即)時(shí)等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時(shí)x的值分別為( 。

A.B.C.D.

【答案】A

【解析】

代入二維形式的柯西不等式的公式中,進(jìn)行化簡即可得到答案。

由柯西不等式可知:

所以,當(dāng)且僅當(dāng)即x=時(shí)取等號,

故函數(shù)的最大值及取得最大值時(shí)的值分別為,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,且

(1)證明:平面;

(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一個(gè)袋子里有紅、黃、藍(lán)色小球各一個(gè)現(xiàn)每次從袋子里取出一個(gè)球(取出某色球的概率均相同),確定顏色后放回,直到連續(xù)兩次均取出紅色球時(shí)為止,記此時(shí)取出球的次數(shù)為ξ,則ξ的數(shù)學(xué)期望為_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,青蒿素作為一線抗瘧藥品得到大力推廣某農(nóng)科所為了深入研究海拔因素對青蒿素產(chǎn)量的影響,在山上和山下的試驗(yàn)田中分別種植了株青蒿進(jìn)行對比試驗(yàn).現(xiàn)在從山上和山下的試驗(yàn)田中各隨機(jī)選取了株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如下表所示:

編號位置

山上

山下

1)根據(jù)樣本數(shù)據(jù),試估計(jì)山下試驗(yàn)田青蒿素的總產(chǎn)量;

2)記山上與山下兩塊試驗(yàn)田單株青蒿素產(chǎn)量的方差分別為,,根據(jù)樣本數(shù)據(jù),試估計(jì)的大小關(guān)系(只需寫出結(jié)論);

3)從樣本中的山上與山下青蒿中各隨機(jī)選取株,記這株的產(chǎn)量總和為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為直角梯形,ABCD,ABAD,PA⊥平面ABCD,E是棱PC上一點(diǎn).

1)證明:平面ADE⊥平面PAB.

2)若PE4EC,O為點(diǎn)E在平面PAB上的投影,ABAP2CD2,求四棱錐PADEO的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)將曲線的參數(shù)方程化為極坐標(biāo)方程;

2)設(shè)直線的參數(shù)方程為(其中為參數(shù)),若與曲線相交于、兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線對稱.給出下面四個(gè)結(jié)論:①將的圖象向右平移個(gè)單位長度后得到函數(shù)圖象關(guān)于原點(diǎn)對稱;②點(diǎn)圖象的一個(gè)對稱中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為(

A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式,此事引起了國際數(shù)學(xué)界的轟動許多專家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對這項(xiàng)重要成果作了報(bào)道并給予了高度評價(jià),印度媒體甚至稱贊張益唐為中國的拉馬努金”.孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問題之一,可以這樣描述:存在無窮多個(gè)素?cái)?shù),使得是素?cái)?shù),素?cái)?shù)對稱為孿生素?cái)?shù).在不超過20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案