【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=﹣ 與曲線C1的交點(diǎn)為P,與曲線C2的交點(diǎn)為Q,求線段PQ的長.
【答案】
(1)解:曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),
普通方程為(x﹣1)2+y2=1,(y<0),
極坐標(biāo)方程為ρ=2cosθ,θ∈(﹣ ,0),曲線C2的參數(shù)方程為 (t為參數(shù)),
普通方程2x+y﹣6=0;
(2)θ=﹣ , ,即P( ,﹣ );
θ=﹣ 代入曲線C2的極坐標(biāo)方程,可得ρ′=6 ,即Q(6 ,﹣ ),
∴|PQ|=6 ﹣ =5 .
【解析】(1)根據(jù)同角三角函數(shù)關(guān)系進(jìn)行消參可得到C1的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程,將C2的參數(shù)方程消掉t可得到普通方程,(2)將θ=-,代入兩個(gè)曲線的極坐標(biāo)方程,得到P、Q的坐標(biāo),從而得到線段PQ的長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(cosx)﹣x與函數(shù)g(x)=cos(sinx)﹣x在區(qū)間 內(nèi)都為減函數(shù),設(shè) ,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1 , x2 , x3的大小關(guān)系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線AB與平面CBF所成角的大;
(Ⅲ)當(dāng)AD的長為何值時(shí),平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2 ,且AC,BD交于點(diǎn)O,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE
(2)已知二面角A﹣PB﹣D的余弦值為 ,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a4=6,a6=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}各項(xiàng)均為正數(shù),其前n項(xiàng)和Tn , 若b3=a3 , T2=3,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的奇函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(1﹣t),且x 時(shí),f(x)=﹣x2 , 則f(3)+f(﹣ 的值等于( 。
A.﹣
B.﹣
C.﹣
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,內(nèi)容極為豐富,其中卷六《均輸》里有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”意思是:“5人分取5錢,各人所得錢數(shù)依次成等差數(shù)列,其中前2人所得錢數(shù)之和與后3人所得錢數(shù)之和相等.”(“錢”是古代的一種重量單位),則其中第二人分得的錢數(shù)是( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn=2an﹣1,n∈N*.?dāng)?shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1),n∈N*,且b1=1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an ,數(shù)列{cn}的前n項(xiàng)和為Tn , 對(duì)任意的n∈N*,都有Tn<nSn﹣a,求實(shí)數(shù)a的取值范圍;
(3)是否存在正整數(shù)m,n使b1 , am , bn(n>1)成等差數(shù)列,若存在,求出所有滿足條件的m,n,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com