AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求證:BF⊥平面DAF;
(II)求ABCD與平面CDEF所成銳二面角的某三角函數(shù)值;
(III)求多面體ABCDFE的體積。
(I)先證AD⊥平面ABEF,∴AD⊥BF;
由AB為圓O的直徑,得AF⊥BF,且AF∩AD=A,可得BF⊥平面DAF;
(II) ;
解析試題分析:(I)證明:因為平面ABCD⊥平面ABEF,AD⊥AB,
∴AD⊥平面ABEF,∴AD⊥BF;
又∵AB為圓O的直徑,∴AF⊥BF,
AF∩AD=A,
∴BF⊥平面DAF; 4分
(II)取AB,CD,EF的中點M,P,N(如圖所示)
科目:高中數(shù)學 來源: 題型:解答題
如圖,是半圓的直徑,是半圓上除、外的一個動點,平面,,,,.
⑴證明:平面平面;
⑵試探究當在什么位置時三棱錐的體積取得最大值,請說明理由并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐PABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PA⊥BD;(2)設PD=AD,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=.
(1)求直線D1B與平面ABCD所成角的大。
(2)求證:AC⊥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,現(xiàn)將△ ADE沿直線DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F為線段A′D的中點.
(1)求證:EF//平面A′BC;
(2)求直線A′B與平面A′DE所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com