7.不等式$\frac{2x-1}{x+2}>1$的解集為  ( 。
A.{x|x<-2或x>3}B.{x|x<-3或x>2}C.{x|-2<x<3}D.{x|-3<x<2}

分析 不等式即即$\frac{x-3}{x+2}$>0,即(x-3)•(x+2)>0,由此求得x的范圍.

解答 解:不等式$\frac{2x-1}{x+2}>1$,即$\frac{x-3}{x+2}$>0,即(x-3)•(x+2)>0,
求得x>3,或x<-2,
故選:A.

點評 本題主要考查分式不等式的解法,以一元二次不等式的解法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知直線l:2x+y-1=0與圓C:x2+y2=1相交于A,B兩點.
(1)求△AOB的面積(O為坐標原點);
(2)設直線ax+by=1與圓C:x2+y2=1相交于M,N兩點(其中a,b是實數(shù)),若OM⊥ON,試求點P(a,b)與點Q(0,1)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果a>b,那么下列不等式中正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.|a|>|b|C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某濱海旅游公司今年年初用49萬元購進一艘游艇,并立即投入使用,預計每年的收入為25萬元,此外每年都要花費一定的維護費用,計劃第一年維護費用4萬元,從第二年起,每年的維修費用比上一年多2萬元,設使用x年后游艇的盈利為y萬元.
(1)寫出y與x之間的函數(shù)關系式;
(2)此游艇使用多少年,可使年平均盈利額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,$\frac{a}{2b}=cosC$,則這個三角形一定是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將邊長為1的正三角形薄片,沿一條平行于底邊的直線剪成兩塊,其中一塊是梯形,記$S=\frac{梯形的周長}{梯形的面積}$,則S的最小值是$\frac{4\sqrt{6}}{3}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC三邊a,b,c上的高分別為$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$,1,則cosA等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知:
命題p:若函數(shù)f(x)=x2+|x-a|是偶函數(shù),則a=0.
命題q:?m∈(0,+∞),關于x的方程mx2-2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中為真命題的是( 。
A.②③B.②④C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設數(shù)列{an}、{bn}滿足a1=b1=8,a2=b2=6,a3=b3=5,且{an+1-an}是等差數(shù)列,{bn+1-bn}是等比數(shù)列.
(1)分別求出數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an}中的最小項及最小項的值.

查看答案和解析>>

同步練習冊答案