甲、乙兩名射擊運(yùn)動員,甲射擊一次命中10環(huán)的概率為0.5,乙射擊一次命中10環(huán)的概率為s,若他們獨(dú)立的射擊兩次,設(shè)乙命中10環(huán)的次數(shù)為X,則EX=,Y為甲與乙命中10環(huán)次數(shù)的差的絕對值.
求(1) s的值     (2)  Y的分布列及期望.
(1)
本試題主要考查了該路段求解以及分不累和期望值的求解。
解:由已知可得,故
  有Y的取值可以是0,1,2.
甲、乙兩人命中10環(huán)的次數(shù)都是0次的概率是
甲、乙兩人命中10環(huán)的次數(shù)都是1次的概率是
甲、乙兩人命中10環(huán)的次數(shù)都是2次的概率是 所以
甲命中10環(huán)的次數(shù)是2且乙命中10環(huán)的次數(shù)是0次的概率是,甲命中10環(huán)的次數(shù)是0且乙命中10環(huán)的次數(shù)是2次的概率是
所以,故 所以Y的分布列是
Y
0
1
2
P



 所以 Y的期望是EY=7/9.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在平面內(nèi),不等式確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222940561341.png" style="vertical-align:middle;" />,不等式組確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222940607338.png" style="vertical-align:middle;" />.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”. 在區(qū)域任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域的概率;
(Ⅱ)在區(qū)域每次任取個(gè)點(diǎn),連續(xù)取次,得到個(gè)點(diǎn),記這個(gè)點(diǎn)在區(qū)域的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
一個(gè)袋子中裝有大小形狀完全相同的編號分別為1,2,3,4,5的5個(gè)紅球與編號為1,2,3,4的4個(gè)白球,從中任意取出3個(gè)球.
(Ⅰ)求取出的3個(gè)球顏色相同且編號是三個(gè)連續(xù)整數(shù)的概率;
(Ⅱ)求取出的3個(gè)球中恰有2個(gè)球編號相同的概率;
(Ⅲ)記X為取出的3個(gè)球中編號的最大值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
甲,乙兩人進(jìn)行乒乓球比賽,約定每局勝者得分,負(fù)者得分,比賽進(jìn)行到有一人比對方多分或打滿局時(shí)停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
(Ⅰ)求的值;
(Ⅱ)設(shè)表示比賽停止時(shí)比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若隨機(jī)變量的分布表如表所示,則      ▲    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一個(gè)3×4×5的長方體, 它的六個(gè)面上均涂上顏色. 現(xiàn)將這個(gè)長方體鋸成60個(gè)1×1×1的小正方體,從這些小正方體中隨機(jī)地任取1個(gè),設(shè)小正方體涂上顏色的面數(shù)為.
(1)求的概率;
(2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一籃球運(yùn)動員投籃一次得3分的概率為,得2分的概率為,不得分的概率為
其中,,,且無其它得分情況。已知他投籃一次得分的數(shù)學(xué)期望為1,則
的最大值是(。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

現(xiàn)有大小形狀完全相同的標(biāo)號為i 的i 個(gè)球(i = 1,2,3),現(xiàn)從中隨機(jī)取出2 個(gè)球,記取出的這兩個(gè)球的標(biāo)號數(shù)之和為,則隨機(jī)變量的數(shù)學(xué)期望E =              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)現(xiàn)有正整數(shù)1,2,3,4,5,…n,一質(zhì)點(diǎn)從第一個(gè)數(shù)1出發(fā)順次跳動,質(zhì)點(diǎn)的跳動步數(shù)通過拋擲骰子來決定:骰子的點(diǎn)數(shù)小于等于4時(shí),質(zhì)點(diǎn)向前跳一步;骰子的點(diǎn)數(shù)大于4時(shí),質(zhì)點(diǎn)向前跳兩步.
(I)若拋擲骰子二次,質(zhì)點(diǎn)到達(dá)的正整數(shù)記為,求E
(II)求質(zhì)點(diǎn)恰好到達(dá)正整數(shù)5的概率.

查看答案和解析>>

同步練習(xí)冊答案