17.與圓x2+y2+2x-4y=0相切于原點的直線方程是( 。
A.x-2y=0B.x+2y=0C.2x-y=0D.2x+y=0

分析 先求出圓的標(biāo)準(zhǔn)方程,可得圓心坐標(biāo)和半徑,(0,0)滿足圓的方程,從而得到答案.

解答 解:圓:x2+y2+2x-4y=0,即(x+1)2+(y-2)2=5,表示以C(-1,2)為圓心,半徑等于$\sqrt{5}$的圓.
(0,0)滿足圓的方程,所以過點(0,0)且與圓x2+y2+2x-4y=0相切的直線方程為x-2y=0.
故選:A.

點評 本題主要考查圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△PF1F2的一個頂點P(7,12)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1上,另外兩頂點F1、F2為該雙曲線的左、右焦點,則△PF1F2的內(nèi)心橫坐標(biāo)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,三棱柱ABC-A1B1C1所有的棱長均為2,A1B=$\sqrt{6}$,A1B⊥AC.
(Ⅰ)求證:A1C1⊥B1C;
(Ⅱ)求直線AC和平面ABB1A1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的各項都是正數(shù),它的前n項和為Sn,滿足2Sn=an2+an,記bn=(-1)n$\frac{{2{a_n}+1}}{{{a_n}^2+{a_n}}}$.
(1)求數(shù)列{an}的通項公式; 
(2)求數(shù)列{bn}的前2016項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=2x和圓x2+y2-x=0,傾斜角為$\frac{π}{4}$的直線l經(jīng)過拋物線的焦點,若直線l與拋物線和圓的交點自上而下依次為A,B,C,D,則|AB|+|CD|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$則f(f(-1))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y∈R,i為虛數(shù)單位,且(x-2)i-y=-1+i,則(1+i)x+y的值為( 。
A.4B.4+4iC.-4D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.以直角坐標(biāo)系原點O為極點,x軸正方向為極軸,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cost}\\{y=sint}\end{array}\right.$(t為參數(shù)),C2的極坐標(biāo)方程為ρ2(1+sin2θ)=8,C3的極坐標(biāo)方程為θ=α,α∈[0,π),ρ∈R,
(1)若C1與C3的一個公共點為A(異于O點),且|OA|=$\sqrt{3}$,求α;
(2)若C1與C3的一個公共點為A(異于O點),C2與C3的一個公共點為B,求|OA|•|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知(x-2)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,則a3=( 。
A.15B.-15C.20D.-20

查看答案和解析>>

同步練習(xí)冊答案