【題目】已知復(fù)數(shù)z=k﹣2i(k∈R)的共軛復(fù)數(shù) ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過點(diǎn)(0,﹣2)的直線l的斜率為k,求直線l與曲線y= 以及y軸所圍成的圖形的面積.

【答案】
(1)解:復(fù)數(shù)z=k﹣2i的共軛復(fù)數(shù) =k+2i,

且z﹣( ﹣i)= ﹣2i,

∴(k﹣2i)﹣( ﹣i)= (k+2i)﹣2i,

∴(k﹣ )﹣i= k﹣i,

即k﹣ = k,

解得k=1;


(2)解:過點(diǎn)(0,﹣2)的直線l的斜率為k=1,

∴直線l的方程為:y=x﹣2;

,解得

∴直線l與曲線y= 的交點(diǎn)為(4,2);

如圖所示,

曲線y= 與直線y=x﹣2以及y軸所圍成的圖形的面積為:

SOBC+∫02 dx+∫24 ﹣x+2)dx= ×2×2+ +( x2+2x) =


【解析】(1)利用復(fù)數(shù)相等與代數(shù)運(yùn)算,列出方程求出k的值;(2)寫出直線l的方程,求出直線l與曲線y= 的交點(diǎn),再利用積分求對(duì)應(yīng)的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間),同時(shí)滿足:

內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時(shí), 的值域也是

則稱函數(shù)是區(qū)間上的“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)已知)是區(qū)間上的“保值函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax1(x≥0)的圖象經(jīng)過點(diǎn)(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax2+8,x∈[﹣2,1]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ (x∈R),區(qū)間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于兩個(gè)定義域相同的函數(shù)f(x)、g(x),若存在實(shí)數(shù)m,n,使h(x)=mf(x)+ng(x),則稱函數(shù)f(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個(gè)偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1)”生成一個(gè)函數(shù)h(x),使得h(x)滿足:
①是偶函數(shù),②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共種,現(xiàn)對(duì)這兩種方案生產(chǎn)的產(chǎn)品分別隨機(jī)調(diào)查了各次,得到如下統(tǒng)計(jì)表:

①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品

正次品

甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

頻 數(shù)

②生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品

正次品

乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

頻 數(shù)

已知生產(chǎn)電子產(chǎn)品甲件,若為正品可盈利元,若為次品則虧損元;生產(chǎn)電子產(chǎn)品乙件,若為正品可盈利元,若為次品則虧損元.

(I)按方案①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品,求這件產(chǎn)品平均利潤(rùn)的估計(jì)值;

(II)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共件,欲使件產(chǎn)品所得總利潤(rùn)大于元的機(jī)會(huì)多,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(﹣3)=0,當(dāng)x>0時(shí),有f(x)﹣xf′(x)>0成立,則不等式f(x)>0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案