【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門推出了針對(duì)電商商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品好評(píng)率為,對(duì)服務(wù)好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評(píng)的概率.
注:1.
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:2.,.
【答案】(1)可以;(2).
【解析】
試題(1)得到對(duì)應(yīng)的列聯(lián)表,根據(jù)條件中給出的數(shù)據(jù)以及公式計(jì)算相應(yīng)的值,比較大小即可判斷;(2)列出所有符合題意的基本事件的種數(shù)以及所有的基本事件的種數(shù),根據(jù)古典概型即可求解.
試題解析:由題意可得關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表:
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 80 | 40 | 120 |
對(duì)商品不滿意 | 70 | 10 | 80 |
合計(jì) | 150 | 50 | 200 |
,
可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān);(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式從這200次交易中取出5次交易,則好評(píng)的交易次數(shù)為3次,不滿意的次數(shù)為2次,令好評(píng)的交易為,,,不滿意的交易為,,從5次交易中,取出2次的所有取法為,,,,,,,,,,共計(jì)10種情況,其中只有一次好評(píng)的情況是,,,,,,共計(jì)6種,因此,只有一次好評(píng)的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則下列結(jié)論正確的是( )
A.四面體ABCD每組對(duì)棱相互垂直
B.四面體ABCD每個(gè)面的面積相等
C.從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°且小于180°
D.連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )
A.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度
B.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度
C.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變)
D.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過定點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)權(quán)威部門統(tǒng)計(jì),高中學(xué)生眼睛近視已是普遍現(xiàn)象,這與每個(gè)學(xué)生是否科學(xué)用眼有很大關(guān)系.每年5月5日是全國(guó)愛眼日,我市某中學(xué)在此期間開展了一系列的用眼衛(wèi)生教育活動(dòng).為了解本校學(xué)生用眼衛(wèi)生情況,學(xué)校醫(yī)務(wù)室隨機(jī)抽取了100名學(xué)生對(duì)其進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生不間斷用眼時(shí)間(單位:分鐘)的頻率分布直方圖,且將不間斷用眼時(shí)間不低于60分鐘的學(xué)生稱為“不愛護(hù)眼者”,低于60分鐘的學(xué)生稱為“愛護(hù)眼者”.
(1)根據(jù)頻率分布直方圖,求這100名學(xué)生不間斷用眼時(shí)間的平均數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“不愛護(hù)眼者”與性別有關(guān)?
愛護(hù)眼者 | 不愛護(hù)眼者 | 合計(jì) | |
男 | 45 | ||
女 | 15 | ||
合計(jì) |
(3)在不間斷用眼時(shí)間為和兩組人中先按分層抽樣的方法任意選取5人,再?gòu)倪@5人中隨機(jī)抽取2人了解他們的視力狀況,求這兩人來(lái)自不同組別的概率.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com