定義新運(yùn)算“&”與“”:,,則函數(shù) 
是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)
A

試題分析:根據(jù)定義新運(yùn)算“&”與“”:,得;3*2x=log22x=x,x&3=x2.所以函數(shù),故定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱,
再由f(-x)=-,可得函數(shù)f(x)是奇函數(shù).故選A.
點(diǎn)評(píng):迅速理解新定義,根據(jù)新定義得出3*2x=log22x=x,x&3=x2,是做此題的關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)y=f(x) (x∈R)滿足:f(x+2)=f(x),且x∈[–1, 1]時(shí),f(x) =" |" x |,函數(shù)y=g(x)是定義在R上的奇函數(shù),且x∈(0, +∞)時(shí),g(x) =" log" 3 x,則函數(shù)y=f(x)的圖像與函數(shù)y=g(x)的圖像的交點(diǎn)個(gè)數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)經(jīng)市場調(diào)查,某商場的一種商品在過去的一個(gè)月內(nèi)(以30天計(jì))銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿足為正的常數(shù)),日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系近似滿足,且第25天的銷售金額為13000元.
(1)求的值;
(2)試寫出該商品的日銷售金額關(guān)于時(shí)間的函數(shù)關(guān)系式,并求前半個(gè)月銷售金額的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當(dāng)且僅當(dāng)0<x<1時(shí)f(x)<0,且對(duì)任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明:
(1)f(x)為奇函數(shù);
(2)f(x)在(-1,1)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),求使成立的的取值范圍。(10分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間[0,4]上是增函數(shù), 則的大小關(guān)系是 (     )
A.B.
C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)某市“環(huán)保提案”對(duì)某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距,兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù),,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè).
(1) 試將表示為的函數(shù);
(2) 若時(shí),處取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
(1)已知函數(shù)f(x)=2x-x2,問方程f(x)=0在區(qū)間[-1,0]內(nèi)是否有解,為什么?
(2)若方程ax2-x-1=0在(0,1)內(nèi)恰有一解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

具有相同定義域D的函數(shù)和,,若對(duì)任意的,都有,則稱在D上是“密切函數(shù)”.給出定義域均為的四組函數(shù):、




其中,函數(shù)在D上為“密切函數(shù)”的是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案