設f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=-1,若在區(qū)間(-2,6)內(nèi)的關于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數(shù)根,則實數(shù)a的取值范圍是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)
【答案】分析:在同一直角坐標系中作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象,結(jié)合題意可得到關于a的關系式,從而得到答案.
解答:解:∵當x∈[-2,0)時,f(x)=-1,
∴當x∈(0,2]時,-x∈[-2,0),
∴f(-x)=-1=-1,又f(x)是定義在R上的偶函數(shù),
∴f(x)=-1(0<x≤2),又f(2+x)=f(2-x),
∴f(x)的圖象關于直線x=2對稱,且f(4+x)=f(-x)=f(x),
∴f(x)是以4為周期的函數(shù),
∵在區(qū)間(-2,6)內(nèi)的關于x的方程f(x)-loga(x+2)=0(a>0且a≠1)恰有4個不同的實數(shù)根,
令h(x)=loga(x+2),即f(x)=h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)有有4個交點,
在同一直角坐標系中作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象,
∴0<loga(6+2)<1,
∴a>8.
故選D.
點評:本題考查根的存在性及根的個數(shù)判斷,求得f(x)的解析式,作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象是關鍵,考查作圖能力與數(shù)形結(jié)合的思想,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、設f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習冊答案