如圖,是圓的直徑,為圓上一點(diǎn),,垂足為,點(diǎn)為圓上任一點(diǎn),交于點(diǎn)于點(diǎn)

求證:(1);(2)

(1)∵,∴,∴,∴(2)延長(zhǎng)與⊙O交于點(diǎn)N,由相交弦定理得,且,∴
由(1)∴

解析試題分析:(1)∵,∴,

,
;           5分
(2)延長(zhǎng)與⊙O交于點(diǎn)N,由相交弦定理,
,且,
,由(1)
             10分
考點(diǎn):平面幾何證明
點(diǎn)評(píng):由直線與圓相交時(shí)產(chǎn)生的邊角關(guān)系得到相似三角形,借助于相似三角形實(shí)現(xiàn)邊與角的互化

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

切線與圓切于點(diǎn),圓內(nèi)有一點(diǎn)滿足,的平分線交圓于,,延長(zhǎng)交圓于,延長(zhǎng)交圓于,連接.

(Ⅰ)證明://;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過圓O外一點(diǎn)P作該圓的兩條割線PAB和PCD,分別交圓O于點(diǎn)A,B,C,D弦AD和BC交于Q點(diǎn),割線PEF經(jīng)過Q點(diǎn)交圓O于點(diǎn)E、F,點(diǎn)M在EF上,且:
(I)求證:PA·PB=PM·PQ.
(II)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的切線,過圓心的直徑,相交于兩點(diǎn),連結(jié)、. (1) 求證:
(2) 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

、分別與圓相切于、經(jīng)過圓心,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,, BE平分∠ABC交AC于點(diǎn)E, 點(diǎn)D在AB上,

(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若,求EC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知C點(diǎn)在⊙O直徑BE的延長(zhǎng)線上,CA切⊙O于A 點(diǎn),CD是∠ACB的平分線且交AE于點(diǎn)F,交AB于點(diǎn)D

(1)求∠ADF的度數(shù); (2)若AB=AC,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講.
如圖,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長(zhǎng)線于點(diǎn)G.

⑴證明:圓心O在直線AD上;
⑵證明:點(diǎn)C是線段GD的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案