【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | |
保費(fèi)(元) |
隨機(jī)調(diào)查了該險(xiǎn)種的400名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:
出險(xiǎn)序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) | 0 |
將所抽樣本的頻率視為概率.
(Ⅰ)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;
(Ⅱ)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)3次,則可獲得賠付元;若續(xù)保人在本年度內(nèi)出險(xiǎn)6次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;
(Ⅲ)續(xù)保人原定約了保險(xiǎn)公司的銷售人員在上午10:30~11:30之間上門(mén)簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午10:45~11:05之間,請(qǐng)問(wèn)續(xù)保人在離開(kāi)前見(jiàn)到銷售人員的概率是多少?
【答案】(Ⅰ);(Ⅱ);(Ⅲ)
【解析】
(Ⅰ)根據(jù)題意利用頻率估計(jì)概率,結(jié)合表格數(shù)據(jù),列出保費(fèi)的分布列,進(jìn)而可求出續(xù)保人保費(fèi)的平均值的估計(jì)值,
(Ⅱ)根據(jù)題意利用頻率估計(jì)概率,結(jié)合表格數(shù)據(jù),列出賠償金額的分布列,進(jìn)而可求出續(xù)保人所獲賠付金額的平均值.
(Ⅲ)設(shè)保險(xiǎn)公司銷售人員到達(dá)的時(shí)間為,續(xù)保人離開(kāi)的時(shí)間為,看成平面上的點(diǎn),全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>,再列出兩人能見(jiàn)面滿足的條件,利用幾何概型概率的求法即可求解.
(Ⅰ)由題意可得:
保費(fèi)(元) | |||||
概率 | 0.7 | 0.2 | 0.06 | 0.03 | 0.01 |
本年度續(xù)保人保費(fèi)的平均值的估計(jì)值為:
;
(Ⅱ)由題意可得:
賠償金額(元) | 0 | ||||
概率 | 0.7 | 0.2 | 0.06 | 0.03 | 0.01 |
本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值:
;
(Ⅲ)設(shè)保險(xiǎn)公司銷售人員到達(dá)的時(shí)間為,續(xù)保人離開(kāi)的時(shí)間為,看成平面上的點(diǎn),全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>,
則區(qū)域的面積.
事件表示續(xù)保人在離開(kāi)前見(jiàn)到銷售人員,
所構(gòu)成的區(qū)域?yàn)?/span>,
即圖中的陰影部分,
其面積.
所以,即續(xù)保人在離開(kāi)前見(jiàn)到銷售人員的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,給定個(gè)整點(diǎn),其中.
(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;
(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.
(i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;
(ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若時(shí),討論的單調(diào)性;
(2)設(shè),若有兩個(gè)零點(diǎn),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線上與C交于A,B兩點(diǎn),是否存在l,使得點(diǎn)在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.
(1)求證:平面平面ABC;
(2)求點(diǎn)D到平面CEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( 。
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com