已知直線l⊥平面α,有以下幾個(gè)判斷:
①若m⊥l,則mα,
②若m⊥α,則ml
③若mα,則m⊥l,
④若ml,則m⊥α,
上述判斷中正確的是(  )
A.①②③B.②③④C.①③④D.①②④
對(duì)于①當(dāng)m⊆平面α也可以有m⊥l但m不平行于面α故①錯(cuò).
對(duì)于②根據(jù)線面垂直的性質(zhì)定理可知②正確.
對(duì)于③根據(jù)線面平行的性質(zhì)定理可得存在n⊆α且mn而直線l⊥平面α故可根據(jù)再根據(jù)線面垂直的定義得出L⊥n,故L⊥m正確.
對(duì)于④根據(jù)直線l⊥平面α可在平面α內(nèi)找到兩條相交直線p,n且l⊥p,l⊥n又ml所以m⊥p,m⊥n故根據(jù)線面垂直的判定定理可知,m⊥α正確.
即②③④正確
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點(diǎn),
又∠PDA為45°
(1)求證:AF平面PEC
(2)求證:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折成一個(gè)直二面角,且EA⊥平面ABD,AE=a(如圖).
(Ⅰ)若a=2
2
,求證:AB平面CDE;
(Ⅱ)求實(shí)數(shù)a的值,使得二面角A-EC-D的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在平行六面體ABCD-A1B1C1D1中,E、F、G分別是A1D1、D1D、D1C1的中點(diǎn).
求證:平面EFG平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1的底面中,AB⊥AC,AB=AC=a,D為CC1的中點(diǎn),
CC1
AC

(1)λ為何值時(shí),A1D⊥平面ABD;
(2)當(dāng)A1D⊥平面ABD時(shí),求C1到平面ABD的距離;
(3)當(dāng)二面角A-BD-C為60°時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E為BB1的中點(diǎn),D點(diǎn)在AB上且DE=
3

(Ⅰ)求證:CD⊥平面A1ABB1;
(Ⅱ)求三棱錐A1-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(I)求證:直線AE⊥平面A1D1E;
(II)求三棱錐A-A1D1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD-A1B1C1D1是正方體,點(diǎn)E,F(xiàn)分別是BB1,B1D1中點(diǎn),求證:EF⊥DA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD是梯形,ABCD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E為PD的中點(diǎn)
(Ⅰ)求證:AE面PBC.
(Ⅱ)求直線AC與PB所成角的余弦值;
(Ⅲ)在面PAB內(nèi)能否找一點(diǎn)N,使NE⊥面PAC.若存在,找出并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案