【題目】已知函數(shù)f(x)= ,其中a>0,且函數(shù)f(x)的最大值是
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=lnf(x)﹣b有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若對(duì)任意的x∈(0,2),都有f(x)< 成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:由題意得函數(shù)f(x)= 的導(dǎo)數(shù)為f′(x)= ,
因?yàn)閍>0,所以當(dāng)x∈(﹣∞,1)時(shí),f′(x)>0,
y=f(x)在(﹣∞,1)單調(diào)遞增;當(dāng)x∈(1,+∞)時(shí),f′(x)<0,
y=f(x)在(1,+∞)單調(diào)遞減;
則 ,則a=1
(2)解:由題意知函數(shù)g(x)=lnf(x)﹣b=lnx﹣x﹣b,(x>0)
所以g′(x)= ﹣1= ,
易得函數(shù)g(x)在(0,1)單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
所以g(x)max=g(1)=﹣1﹣b,
則依題意知﹣1﹣b>0,
則b<﹣1,所以實(shí)數(shù)b的取值范圍是(﹣∞,﹣1)
(3)解:由題知f(x)= < 對(duì)任意x∈(0,2)都成立,
所以k+2x﹣x2>0,即k>x2﹣2x對(duì)任意x∈(0,2)都成立,從而k≥0.
又不等式整理可得k< +x2﹣2x,令g(x)= +x2﹣2x,
所以g′(x)= +2(x﹣1)=(x﹣1)( +2),得x=1,
當(dāng)x∈(1,2)時(shí),g′(x)>0,函數(shù)g(x)在(1,2)上單調(diào)遞增,
同理,函數(shù)g(x)在(0,1)上單調(diào)遞減,g(x)min=g(1)=e﹣1,
依題意得k<g(x)min=g(1)=e﹣1,
綜上所述,實(shí)數(shù)k的取值范圍是[0,e﹣1)
【解析】(1)求出f(x)的導(dǎo)數(shù),由題意a>0,討論f(x)的單調(diào)區(qū)間,可得f(1)我最大值,解方程可得a的值;(2)求出g(x)的解析式,求得g(x)的導(dǎo)數(shù),單調(diào)區(qū)間,可得g(x)的最大值,令最大值大于0,解不等式即可得到b的范圍;(3)由題意可得f(x)= < 對(duì)任意x∈(0,2)都成立,所以k+2x﹣x2>0,即k>x2﹣2x對(duì)任意x∈(0,2)都成立,從而k≥0,可得k< +x2﹣2x,令g(x)= +x2﹣2x,求出單調(diào)區(qū)間,可得最小值,進(jìn)而得到k的范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,排放時(shí)污染物的含量不得超過(guò)1%.已知在過(guò)濾過(guò)程中廢氣中的污染物數(shù)量P(單位:毫克/升)與過(guò)濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:P=P0e﹣kt , (k,P0均為正的常數(shù)).若在前5個(gè)小時(shí)的過(guò)濾過(guò)程中污染物被排除了90%.那么,至少還需( )時(shí)間過(guò)濾才可以排放.
A. 小時(shí)
B. 小時(shí)
C.5小時(shí)
D.10小時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,, 平面, 分別是的中點(diǎn)。
(1)證明: ;
(2)若為的中點(diǎn)時(shí),與平面所成的角最大,且所成角的正切值為,求點(diǎn)A到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的外接圓半徑,角A、B、C的對(duì)邊分別是a、b、c,且.
(I)求角B和邊長(zhǎng)b;
(II)求面積的最大值及取得最大值時(shí)的a、c的值,并判斷此時(shí)三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)是偶函數(shù),且在(﹣∞,0]上是增函數(shù),又f(2)=0,則xf(x)>0的解集是( )
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是( )
A.有95℅的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
B.若有人未使用該血清,那么他一年中有95℅的可能性得感冒
C.這種血清預(yù)防感冒的有效率為95℅
D.這種血清預(yù)防感冒的有效率為5℅
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點(diǎn).
(Ⅰ)求證:DE垂直于平面PAB;
(Ⅱ)設(shè)BC =,AB=2,求直線EB與平面ABD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司今年一月份推出新產(chǎn)品A,其成本價(jià)為492元/件,經(jīng)試銷調(diào)查,銷售量與銷售價(jià)的關(guān)系如下表:
銷售價(jià)(x/元件) | 650 | 662 | 720 | 800 |
銷售量(y件) | 350 | 333 | 281 | 200 |
由此可知,銷售量y(件)與銷售價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(通常取表中相距較遠(yuǎn)的兩組數(shù)據(jù)所得一次函數(shù)較為精確).
(1)寫(xiě)出以x為自變量的函數(shù)y的解析式及定義域;
(2)試問(wèn):銷售價(jià)定為多少時(shí),一月份銷售利潤(rùn)最大?并求最大銷售利潤(rùn)和此時(shí)的銷售量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com