用平行于四面體ABCD的一組對(duì)棱AC和BD的平面截此四面體,得一四邊形MNPQ,如圖2-2-19所示.

圖2-2-19

(1)求證:MNPQ是平行四邊形.

(2)若AC=BD,能截得菱形嗎,如何截?

(3)在什么情況下,可以截得一個(gè)矩形?

(4)在什么情況下,能截得一個(gè)正方形呢,如何截?

(5)若AC=BD=a,求證:平行四邊形MNPQ的周長(zhǎng)一定.

思路分析:本題以線面、面面的平行為載體,來(lái)解決相關(guān)的問(wèn)題.對(duì)于(1)可用兩組對(duì)邊分別平行來(lái)證明MNPQ是平行四邊形;再由比例的性質(zhì)證得結(jié)論(2);當(dāng)對(duì)棱垂直時(shí),由空間等角的關(guān)系,可見(jiàn)四邊形MNPQ的一個(gè)角是直角,從而得到結(jié)(3);對(duì)于結(jié)論(4),只要滿足既是菱形又是矩形的要求即可;對(duì)于第(5)問(wèn),只要注意△AMQ∽△ABD,就可把平行四邊形MNPQ的周長(zhǎng)表示出來(lái),從而確定它是否是與a有關(guān)的定值.

(1)證明:∵AC∥平面MNPQ,且平面ADC∩平面MNPQ=PQ,且AC平面ADC,

∴AC∥PQ.

同理可證AC∥MN,BD∥MQ,BD∥NP.

∴PQ∥MN,MQ∥NP.

∴四邊形MNPQ為一平行四邊形.

(2)解:由(1)得

由MQ∥BD,得.②

又AC=BD,

①÷②得,當(dāng)DQ=AQ時(shí),

PQ=MQ.又四邊形MNPQ為平行四邊形,

∴MNPQ為菱形,即當(dāng)Q取AD中點(diǎn)時(shí)可截得菱形.

(3)解:顯然,當(dāng)AC⊥BD時(shí),MN⊥NP,即四邊形MNPQ為矩形.

(4)解:由(2)和(3)可知,當(dāng)AC=BD,且AC⊥BD,且Q為AD的中點(diǎn)時(shí),四邊形MNPQ為一正方形.

(5)證明:設(shè)MQ=x,PQ=y,Q為AD上一點(diǎn),且AQ∶QD=m∶n,

∵△AMQ∽△ABD,

,且BD=a.

∴x=MQ=a.

同理可得y=PQ=a.

∴x+y=a+a=a.

∴周長(zhǎng)為2(x+y)=2a,

即當(dāng)AC=BD=a時(shí),平行四邊形MNPQ的周長(zhǎng)為定值2a.

  綠色通道:本小題是一道典型的發(fā)散性思維題,其中綜合了幾何中的多個(gè)知識(shí)點(diǎn),特別是線面平行和線線平行.正確理解相關(guān)平面圖形的定義是解答本題的關(guān)鍵.通過(guò)引入了參數(shù)m、n、x、y,可建立相關(guān)量間的關(guān)系式,消去參數(shù)后即得所求結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知正四面體P-ABC的棱長(zhǎng)為4,用一平行于底面的平面截此四面體,所得截面面積為,求截面與底面之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知正四面體P-ABC的棱長(zhǎng)為4,用一平行于底面的平面截此四面體,所得截面面積為,求截面與底面之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案