【題目】某工廠(chǎng)為了檢查一條流水線(xiàn)的生產(chǎn)情況,從該流水線(xiàn)上隨機(jī)抽取40件產(chǎn)品,測(cè)量這些產(chǎn)品的重量(單位:克),整理后得到如下的頻率分布直方圖(其中重量的分組區(qū)間分別為(490,495],(495,500],(500,505],(505,510],(510,515]) (I)若從這40件產(chǎn)品中任取兩件,設(shè)X為重量超過(guò)505克的產(chǎn)品數(shù)量,求隨機(jī)變量X的分布列;
(Ⅱ)若將該樣本分布近似看作總體分布,現(xiàn)從該流水線(xiàn)上任取5件產(chǎn)品,求恰有兩件產(chǎn)品的重量超過(guò)505克的概率.

【答案】解:(I)根據(jù)頻率分布直方圖可知,重量超過(guò)505克的產(chǎn)品數(shù)量為[(0.001+0.005)×5]×40=12. 由題意得隨機(jī)變量X的所有可能取值為 0,1,2
= ,
∴隨機(jī)變量X的分布列為

X

0

1

2

P

(Ⅱ)由題意得該流水線(xiàn)上產(chǎn)品的重量超過(guò)505克的概率為0.3
設(shè)Y為該流水線(xiàn)上任取5件產(chǎn)品重量超過(guò)505克的產(chǎn)品數(shù)量,則Y~B(5,0.3).
故所求概率為P(Y=2)=
【解析】( I)根據(jù)頻率分布直方圖求出重量超過(guò)505克的產(chǎn)品數(shù)量,推出隨機(jī)變量X的所有可能取值為 0,1,2 求出概率,得到隨機(jī)變量X的分布列.(Ⅱ)求出該流水線(xiàn)上產(chǎn)品的重量超過(guò)505克的概率為0.3,推出Y~B(5,0.3).然后求解所求概率.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C1 (a>b>0)的左焦點(diǎn)為F1(﹣1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線(xiàn)l同時(shí)與橢圓C1和拋物線(xiàn)C2:y2=4x相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)與曲線(xiàn)有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年8月8日是我國(guó)第十個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來(lái)。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計(jì)該小區(qū)年齡不超過(guò)80歲的成年人人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某軍工企業(yè)生產(chǎn)一種精密電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù):其中x是儀器的月產(chǎn)量.

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)是多少元?(總收益=總成本+利潤(rùn).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱的底面邊長(zhǎng)為3,側(cè)棱,DCB延長(zhǎng)線(xiàn)上一點(diǎn),且

求二面角的正切值;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓關(guān)于直線(xiàn)對(duì)稱(chēng),圓心在第二象限,半徑為.

(1)求圓的方程;

(2)直線(xiàn)與圓相切,且在軸、軸上的截距相等,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿(mǎn)足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[﹣1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4個(gè)不同的根,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心C在直線(xiàn)上.

若圓Cy軸的負(fù)半軸相切,且該圓截x軸所得的弦長(zhǎng)為,求圓C的標(biāo)準(zhǔn)方程;

已知點(diǎn),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使為坐標(biāo)原點(diǎn),求圓心C的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案