【題目】已知橢園C +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2.且橢圓C過點(diǎn)(-),離心率e=;點(diǎn)P在橢圓C 上,延長PF1與橢圓C交于點(diǎn)Q,點(diǎn)RPF2中點(diǎn).

(I )求橢圓C的方程;

(II )O是坐標(biāo)原點(diǎn),記QF1OPF1R的面積之和為S,S的最大值。

【答案】12

【解析】試題分析:(1)將點(diǎn)坐標(biāo)代人橢圓方程,結(jié)合離心率解方程組可得a=2,b=,c=1.(2)先根據(jù)三角形中位線性質(zhì)得ORPF1.轉(zhuǎn)化SSPQO.設(shè)直線PQ方程,與橢圓方程聯(lián)立方程組,利用韋達(dá)定理解得|y1-y2|,根據(jù)二次函數(shù)求最值,即得S的最大值.

試題解析:解:(I)依題意, =1,,解得a =2,b=,c=1.

故橢圓C的方程為;.

()O,R分別為F1F2,PF2的中點(diǎn),ORPF1.

PF1RPF1O同底等高,SPF1R=SPF10,S=SQF1O+SPF1E=SPQO.

當(dāng)直線PQ的斜率不存在時,其方程為x=-1,此時SPQO=×1×[-(-)]=

當(dāng)直線PQ的斜率存在時,設(shè)其方程為:y=k(x+1),設(shè)P(x1,y1),Q(x2,y2),

顯然直線PQ不與x軸重合,k≠0;

聯(lián)立解得(3+4k)x+8kx+4k-12=0,.

A=144(k2+1)>0,.

|PQ|=|x1-x2|= =,

點(diǎn)O到直線PQ的距離d=,.

S=|PQ|d=6,a=3+4k(3,+∞),

,.

S的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,–2),C(4,1).

(1)若,求D點(diǎn)的坐標(biāo);

(2)設(shè)向量,若k+3平行,求實(shí)數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱的所有棱長都相等,且.

(1)求證:;

(2)直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下判斷:①表示同一函數(shù);②函數(shù)的圖像與直線最多有一個交點(diǎn);③不是函數(shù);④若點(diǎn)的圖像上,則函數(shù)的圖像必過點(diǎn).其中正確的判斷有___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國慶70周年慶典磅礴而又歡快的場景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個品種,花車的設(shè)計團(tuán)隊對這兩個品種進(jìn)行了檢測.現(xiàn)從兩個品種中各抽測了10株的高度,得到如下莖葉圖.下列描述正確的是(

A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長的整齊

B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長的整齊

C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長的整齊

D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長的整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)兩點(diǎn)

1)求的中垂線方程;

2)求過點(diǎn)且與直線平行的直線的方程;

3)一束光線從點(diǎn)射向(2)中的直線,若反射光線過點(diǎn),求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:

性別屬性

同意父母生“二孩”

反對父母生“二孩”

合計

男生

10

女生

30

合計

100

請補(bǔ)充完整上述列聯(lián)表;

根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由.

參考公式與數(shù)據(jù):,其中

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中, ,其前項和為.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設(shè)數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求證:

查看答案和解析>>

同步練習(xí)冊答案