【題目】已知{an}是各項均為正數(shù)的等比數(shù)列,且a1a2=6,a1a2a3.

(1)求數(shù)列{an}的通項公式;

(2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1bnbn+1,求數(shù)列{}的前n項和Tn

【答案】(1)an=2n.(2)Tn=5-

【解析】試題分析:

(1)由條件可求得等比數(shù)列{an}的首項公比,根據(jù)公式可得所求.(2由等差數(shù)列的求和公式及性質(zhì)可得然后結(jié)合條件S2n1bnbn1bn2n1,于是得到,再根據(jù)錯位相減法求解可得所求數(shù)列的前n項和

試題解析:

(1)設等比數(shù)列{an}的公比為q,

由題意知 ,an>0,故可得

(2)∵數(shù)列{bn}為等差數(shù)列,

S2n1bnbn1,bn1≠0,

bn2n1

cn,則cn

Tnc1c2cn,

Tn

①-②Tn()

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):為什么二次函數(shù)的圖象是拋物線?我們知道,平面內(nèi)與一個定點F和一條定直線l距離相等的點的軌跡是拋物線,這是拋物線的定義,也是其本質(zhì)特征因此,只要說明二次函數(shù)的圖象符合拋物線的本質(zhì)特征,就解決了為什么二次函數(shù)的圖象是拋物線的問題進一步講,由拋物線與其方程之間的關(guān)系可知,如果能用適當?shù)姆绞綄?/span>轉(zhuǎn)化為拋物線標準方程的形式,那么就可以判定二次函數(shù)的圖象是拋物線了.下面我們就按照這個思路來展開.對二次函數(shù)式的右邊配方,得.由函數(shù)圖象平移一般地,設是坐標平面內(nèi)的一個圖形,將上所有點按照同一方向,移動同樣的長度,得到圖形,這一過程叫作圖形的平移的知識可以知道,沿向量平移函數(shù)的圖象如圖,函數(shù)圖象的形狀、大小不發(fā)生任何變化,平移后圖象對應的函數(shù)解析式為,我們把它改寫為的形式方程,這是頂點為坐標原點,焦點為的拋物線.這樣就說明了二次函數(shù)的圖象是一條拋物線.

請根據(jù)以上閱讀材料,回答下列問題:

由函數(shù)的圖象沿向量平移,得到的圖象對應的函數(shù)解析式為,求的坐標;

過拋物線的焦點F的一條直線交拋物線于P、Q兩點若線段PF與QF的長分別是p、q,試探究是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1棱長為4,點在棱上,點在棱上,且.在側(cè)面內(nèi)以為一個頂點作邊長為1的正方形,側(cè)面內(nèi)動點滿足到平面距離等于線段長的倍,則當點運動時,三棱錐的體積的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{}是等差數(shù)列,數(shù)列{}的前項和滿足,,

1)求數(shù)列{}{}的通項公式:

2)設為數(shù)列{}的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點,以考點正西千米的處開始為檢查起點,沿著一條北偏東方向的公路,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經(jīng)過多少分鐘檢查員開始收不到信號(點開始),并至少持續(xù)多長時間(之間)該考點才算檢查合格?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角坐標系中,的圓心角為,所在圓的半徑為1,角θ的終邊與交于點C.


1)當C的中點時,D為線段OA上任一點,求的最小值;

2)當C上運動時,DE分別為線段OA,OB的中點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間上的兩個函數(shù),如果對任意的,均有不等式成立,則稱函數(shù)上是友好的,否則稱為不友好的.

1)若,,則在區(qū)間上是否友好;

2)現(xiàn)在有兩個函數(shù),給定區(qū)間

①若在區(qū)間上都有意義,求的取值范圍;

②討論函數(shù)與在區(qū)間上是否友好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,的中點.

)求證:

)求證:平面平面

)在平面內(nèi)是否存在,使得直線平面,請說明理由.

查看答案和解析>>

同步練習冊答案