【題目】已知函數(shù).

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.

【答案】1)當(dāng)時(shí),上是增函數(shù),在上是減函數(shù);當(dāng)時(shí),上是減函數(shù);當(dāng)時(shí),上是增函數(shù),在上是減函數(shù);(2.

【解析】

試題(1)先求出的導(dǎo)數(shù),,然后在的范圍內(nèi)討論的大小以確定的解集;(2時(shí),代入結(jié)合上問(wèn)可知函數(shù)在在上是減函數(shù),在上是增函數(shù),即在取最小值,若,存在,使,即存在使得.從而得出實(shí)數(shù)的取值范圍.注意不能用基本不等式,因?yàn)?/span>等號(hào)取不到,實(shí)際上為減函數(shù).所以其值域?yàn)?/span>,從而,即有.

試題解析:(1)函數(shù)的定義域?yàn)?/span>

因?yàn)?/span>,所以,

,可得,,2

當(dāng)時(shí),由可得,故此時(shí)函數(shù)上是增函數(shù).

同樣可得上是減函數(shù). 4

當(dāng)時(shí),恒成立,故此時(shí)函數(shù)上是減函數(shù). 6

當(dāng)時(shí),由可得,故此時(shí)函數(shù)上是增函數(shù),

上是減函數(shù); 8

2)當(dāng)時(shí),由(1)可知上是減函數(shù),在上是增函數(shù),

所以對(duì)任意的,有,

由條件存在,使,所以, 12

即存在,使得

時(shí)有解,

亦即時(shí)有解,

由于為減函數(shù),故其值域?yàn)?/span>

從而,即有,所以實(shí)數(shù)的取值范圍是. 16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量, 獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨(dú)立的,求的平均值和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)上一點(diǎn)到其焦點(diǎn)的距離為,為圓心且與拋物線(xiàn)準(zhǔn)線(xiàn)相切的圓恰好過(guò)原點(diǎn).點(diǎn)軸的交點(diǎn), 兩點(diǎn)在拋物線(xiàn)上且直線(xiàn)過(guò)點(diǎn)過(guò)點(diǎn)及的直線(xiàn)交拋物線(xiàn)于點(diǎn).

1)求拋物線(xiàn)的方程;

2)求證:直線(xiàn)過(guò)一定點(diǎn)并求出該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為?若存在,取實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在元旦期間開(kāi)展優(yōu)惠酬賓活動(dòng),凡購(gòu)物滿(mǎn)100元可抽獎(jiǎng)一次,滿(mǎn)200元可抽獎(jiǎng)兩次依此類(lèi)推抽獎(jiǎng)箱中有7個(gè)白球和3個(gè)紅球,其中3個(gè)紅球上分別標(biāo)有10元,10元,20元字樣每次抽獎(jiǎng)要從抽獎(jiǎng)箱中有放回地任摸一個(gè)球,若摸到紅球,根據(jù)球上標(biāo)注金額獎(jiǎng)勵(lì)現(xiàn)金;若摸到白球,沒(méi)有任何獎(jiǎng)勵(lì)

)一次抽獎(jiǎng)中,已知摸中了紅球,求獲得20元獎(jiǎng)勵(lì)的概率;

小明有兩次抽獎(jiǎng)機(jī)會(huì),用表示他兩次抽獎(jiǎng)獲得的現(xiàn)金總額,寫(xiě)出的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,.

(1)求四棱錐S-ABCD的體積;

(2)求證:面

(3)求SC與底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列的公比,前n項(xiàng)和為.,且的等差中項(xiàng).

1)求

2)數(shù)列滿(mǎn)足,,求數(shù)列的前2019項(xiàng)和;

3)設(shè),問(wèn)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn).

(1)求橢圓方程;

(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩個(gè)不同的點(diǎn),求線(xiàn)段的垂直平分線(xiàn)在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng),函數(shù) .

(Ⅰ)若,且關(guān)于的方程有且僅有一個(gè)解,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案