如圖,已知平面α⊥平面β,A、B是平面α與平面β的交線上的兩個(gè)定點(diǎn),DA?β,CB?β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α上有一個(gè)動(dòng)點(diǎn)P,使得∠APD=∠BPC,則△PAB的面積的最大值是( 。
分析:利用線面垂直的性質(zhì)可以得到△PAD與△PBC是直角三角形,再由∠APD=∠BPC得到兩直角三角形相似,
過(guò)P作PM⊥AB與M,則M為三角形PAB底邊AB上的高,設(shè)出AM的長(zhǎng)度t,通過(guò)解直角三角形把AM用含有t的代數(shù)式表示,代入三角形面積公式后利用配方法求面積的最大值.
解答:解:由題意平面α⊥平面β,A、B是平面α與平面β的交線上的兩個(gè)定點(diǎn),DA?β,CB?β,
且DA⊥α,CB⊥α,∴△PAD與△PBC是直角三角形,又∠APD=∠BPC,
∴△PAD∽△PBC,又AD=4,BC=8,
∴PB=2PA
如圖,

作PM⊥AB,垂足為M,令A(yù)M=t,
在兩個(gè)Rt△PAM與Rt△PBM中,AM是公共邊及PB=2PA
∴PA2-t2=4PA2-(6-t)2
解得PA2=12-4t
∴PM=
12-4t-t2

∴S=
1
2
×AB×PM=
1
2
×6×
12-4t-t2
=3
12-4t-t2
=3
16-(t+2)2
≤12.
即三角形面積的最大值為12.
點(diǎn)評(píng):本題考查了平面與平面垂直的性質(zhì),考查了學(xué)生的空間想象能力,解答此題的關(guān)鍵是借助于三角形相似尋找關(guān)系,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外的一點(diǎn),則在四棱錐P-ABCD中,M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.
求證:AP∥GH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開(kāi)在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直角梯ACDE所在的平面垂直于平ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)P是線段BC中點(diǎn),證明DP∥平面EAB;
(Ⅱ)求平面EBD與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,已知平面a與平面交于abb內(nèi)ba交于A,c在內(nèi),且ca,求證bc是異面直線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖,已知平面a與平面交于a,bb內(nèi)ba交于A,c在內(nèi),且ca,求證b、c是異面直線

 

查看答案和解析>>

同步練習(xí)冊(cè)答案