已知等差數(shù)列{a
n}的前n項(xiàng)和為S
n,如果S
3=12,a
3+a
5=16,那么
試題分析:根據(jù)題意,由于
,同時(shí)可知
,因此可知
,
,故選D.
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用等差數(shù)列的首項(xiàng)和公差求解前n項(xiàng)和,并利用裂項(xiàng)法求解和,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知等差數(shù)列
中,前
項(xiàng)和為
,若
,則
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知
為等差數(shù)列,其公差為
,且
的等比中項(xiàng),
為
的前
項(xiàng)和,則
的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知
是等差數(shù)列
的前
項(xiàng)和,若
,則
的值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本題滿分14分)
對(duì)數(shù)列{a
n},規(guī)定{△a
n}為數(shù)列{a
n}的一階差分?jǐn)?shù)列,其中
。
對(duì)自然數(shù)k,規(guī)定
為{a
n}的k階差分?jǐn)?shù)列,其中
。
(1)已知數(shù)列{a
n}的通項(xiàng)公式
,試判斷
是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{a
n}首項(xiàng)a
1=1,且滿足
,求數(shù)列{a
n}的通項(xiàng)公式。
(3)對(duì)(2)中數(shù)列{a
n},是否存在等差數(shù)列{b
n},使得
對(duì)一切自然
都成立?若存在,求數(shù)列{b
n}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知整數(shù)對(duì)的序列如下:(1,1),(1,2),(2,1),(1,3),
(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),
(2,4)…,則第57個(gè)數(shù)對(duì)是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
若數(shù)列{a
n}滿足
=p(p為正常數(shù),n∈N
+),則稱{a
n}為“等方比數(shù)列”.
甲:數(shù)列{a
n}是等方比數(shù)列;乙:數(shù)列{a
n}是等比數(shù)列,則甲是乙的
條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”選擇一個(gè)填入)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)已知數(shù)列
中,
,數(shù)列
滿足
。
(1)求證:數(shù)列
是等差數(shù)列;
(2)求數(shù)列
中的最大項(xiàng)和最小項(xiàng),并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知數(shù)列{
}的前
項(xiàng)和
,
(1)求數(shù)列的通項(xiàng)公式
;
(2)設(shè)
,且
,求
.
查看答案和解析>>