給出下列四個結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結(jié)論的序號是 (填上所有正確結(jié)論的序號)
【答案】分析:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,可由命題的否定的書寫規(guī)則進行判斷;
②“若am2<bm2,則a<b”的逆命題為真,可由不等式的運算規(guī)則進行判斷;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點,可由函數(shù)的圖象進行判斷;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x),可由函數(shù)單調(diào)性與導數(shù)的關(guān)系進行判斷.
解答:解:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,此是一個正確命題;
②“若am2<bm2,則a<b”的逆命題為真,由于其逆命題是“若a<b,則am2<bm2”,當m=0時不成立,故逆命題為真不正確;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點,由函數(shù)的圖象知,此函數(shù)僅有一個零點,故命題不正解;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x),由于兩個函數(shù)是一奇一偶,且在x>0時,f′(x)>0,g′(x)>0,故當x<0,,f′(x)>g′(x),成立,此命題是真命題.
綜上①④是正解命題
故答案為①④
點評:本題考查命題的否定,函數(shù)的單調(diào)性與導數(shù)的關(guān)系,及不等式關(guān)系的運算,涉及到的知識點較多,解題的關(guān)鍵是對每個命題涉及的知識熟練掌握,且能靈活運用它們作出判斷.