【題目】已知函數(shù)f(x)= x3-ax2,aR.

(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;

(2)設(shè)函數(shù)g(x)=f(x)+(x-a)cos x-sin x,討論g(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.

【答案】(1)3x-y-9=0;(2)見(jiàn)解析.

【解析】試題分析:(1)求導(dǎo),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解(2)求導(dǎo),為了分析導(dǎo)函數(shù)的符號(hào)變化,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性,進(jìn)而得到原函數(shù)的單調(diào)性和極值.

(1)由題意f'(x)=x2-ax,所以當(dāng)a=2時(shí),f(3)=0,f'(x)=x2-2x,所以f'(3)=3,因此曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程是y=3(x-3),即3x-y-9=0.

(2)因?yàn)?/span>g(x)=f(x)+(x-a)cos x-sin x,

所以g'(x)=f'(x)+cos x-(x-a)sin x-cos x

=x(x-a)-(x-a)sin x

=(x-a)(x-sin x).

h(x)=x-sin x,則h'(x)=1-cos x≥0,所以h(x)在R上單調(diào)遞增.

因?yàn)?/span>h(0)=0,所以當(dāng)x>0時(shí),h(x)>0;

當(dāng)x<0時(shí),h(x)<0.

當(dāng)a<0時(shí),g'(x)=(x-a)(x-sin x),

當(dāng)x∈(-∞,a)時(shí),x-a<0,g'(x)>0,g(x)單調(diào)遞增;

當(dāng)x∈(a,0)時(shí),x-a>0,g'(x)<0,g(x)單調(diào)遞減;

當(dāng)x∈(0,+∞)時(shí),x-a>0,g'(x)>0,g(x)單調(diào)遞增.

所以當(dāng)x=a時(shí)g(x)取到極大值,極大值是g(a)=- a3-sin a,

當(dāng)x=0時(shí)g(x)取到極小值,極小值是g(0)=-a.

當(dāng)a=0時(shí),g'(x)=x(x-sin x),當(dāng)x∈(-∞,+∞)時(shí),g'(x)≥0,g(x)單調(diào)遞增;

所以g(x)在(-∞,+∞)上單調(diào)遞增,g(x)無(wú)極大值也無(wú)極小值.

當(dāng)a>0時(shí),g'(x)=(x-a)(x-sin x).

當(dāng)x∈(-∞,0)時(shí),x-a<0,g'(x)>0,g(x)單調(diào)遞增;

當(dāng)x∈(0,a)時(shí),x-a<0,g'(x)<0,g(x)單調(diào)遞減;

當(dāng)x∈(a,+∞)時(shí),x-a>0,g'(x)>0,g(x)單調(diào)遞增.

所以當(dāng)x=0時(shí)g(x)取到極大值,極大值是g(0)=-a;

當(dāng)x=a時(shí)g(x)取到極小值,極小值是g(a)=- a3-sin a.

綜上所述:當(dāng)a<0時(shí),函數(shù)g(x)在(-∞,a)和(0,+∞)上單調(diào)遞增,在(a,0)上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是g(a)=- a3-sin a,極小值是g(0)=-a;

當(dāng)a=0時(shí),函數(shù)g(x)在(-∞,+∞)上單調(diào)遞增,無(wú)極值;

當(dāng)a>0時(shí),函數(shù)g(x)在(-∞,0)和(a,+∞)上單調(diào)遞增,在(0,a)上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是g(0)=-a,極小值是g(a)=- a3-sin a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調(diào)遞減;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間幾何體中, 均為邊長(zhǎng)為2的等邊三角形, 為腰長(zhǎng)為3的等腰三角形,平面平面,平面平面

(1)試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計(jì)里程指汽車從出廠開(kāi)始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開(kāi)始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對(duì)該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調(diào)性;

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于MN兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位對(duì)一崗位面向社會(huì)公開(kāi)招聘,若甲筆試成績(jī)與面試成績(jī)至少有一項(xiàng)比乙高,則稱甲不亞于乙.在18位應(yīng)聘者中,如果某應(yīng)聘者不亞于其他17人,則稱其為“優(yōu)秀人才”.那么這18人中“優(yōu)秀人才”數(shù)最多為( )

A. 1 B. 2 C. 9 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C,點(diǎn)x軸的正半軸上,過(guò)點(diǎn)M的直線l與拋線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).

,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;

是否存在定點(diǎn)M,使得不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),恒為定值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要條件;

(2)求實(shí)數(shù)a的一個(gè)值,使它成為MP={x|5<x≤8}的一個(gè)充分但不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案