【題目】已知,分別是雙曲線的左頂點(diǎn)、右焦點(diǎn),過的直線的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點(diǎn).若,則的離心率是( )

A. B. C. D.

【答案】D

【解析】

由已知條件設(shè)出直線l的方程,與y=﹣x聯(lián)立,求P點(diǎn)坐標(biāo),將x0帶入直線l,求Q點(diǎn)坐標(biāo),由APAQ,知kAPkAQ,由此求離心率.

A,F分別是雙曲線的左頂點(diǎn)、右焦點(diǎn),

A(﹣a,0Fc,0),

∵過F的直線lC的一條漸近線垂直,

且與另一條漸近線和y軸分別交于P,Q兩點(diǎn),

∴直線l的方程為:y=﹣,

直線ly=﹣y=﹣x聯(lián)立:

,解得P點(diǎn)

x0帶入直線ly=﹣,得Q0,),

APAQ,∴kAPkAQ×=﹣1,

化簡得b2aca2=﹣c2,

b2c2a2代入,得2c22a2ac0

同除a22e22e0,

e,或e(舍).

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一組圓.下列四個(gè)命題正確的是( )

A. 存在,使圓與軸相切

B. 存在一條直線與所有的圓均相交

C. 存在一條直線與所有的圓均不相交

D. 所有的圓均不經(jīng)過原點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得的利潤分別為(萬元),事先根據(jù)相關(guān)資料得出它們與投入資金(萬元)的數(shù)據(jù)分別如下表和圖所示:其中已知甲的利潤模型為,乙的利潤模型為.(為參數(shù),且.

1)請(qǐng)根據(jù)下表與圖中數(shù)據(jù),分別求出甲、乙兩種產(chǎn)品所得的利潤與投入資金(萬元)的函數(shù)模型

2)今將萬資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于萬元.設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),并設(shè)總利潤為(萬元),如何分配投入資金,才能使總利潤最大?并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的奇偶性;

2)當(dāng)時(shí),求的值域;

3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最

小值為,離心率為。

(I)求橢圓的方程;

)過點(diǎn)(1,0)作直線兩點(diǎn),試問:在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,點(diǎn)為棱的一點(diǎn).

(Ⅰ)若點(diǎn)為棱的中點(diǎn),證明:;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若存在區(qū)間,使得稱區(qū)間為函數(shù)和諧區(qū)間”.

1)請(qǐng)直接寫出函數(shù)的所有的和諧區(qū)間;

2)若為函數(shù)的一個(gè)和諧區(qū)間,求的值;

3)求函數(shù)的所有的和諧區(qū)間”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷并證明的奇偶性;

2)求使的取值范圍;

3)若,是否存在實(shí)數(shù),使得有三個(gè)不同的零點(diǎn),若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x>0時(shí),(x-2)exx+2>0.

(2)證明:當(dāng)a[0,1) 時(shí),函數(shù)g(x)= (x>0) 有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案