已知點(diǎn)P(2,0),及⊙C:x2+y2-6x+4y+4=0.

(Ⅰ)當(dāng)直線l過點(diǎn)P且與圓心C的距離為1時(shí),求直線l的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線與⊙C交于A、B兩點(diǎn),當(dāng)|AB|=4,求以線段AB為直徑的圓的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江西省新余一中2011-2012學(xué)年高一下學(xué)期第一次段考數(shù)學(xué)試題 題型:044

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.

(Ⅰ)若直線l過點(diǎn)P且與圓心C的距離為1,求直線l的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線段MN為直徑的圓Q的方程;

(Ⅲ)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧汶上一中2011-2012學(xué)年高二上學(xué)期12月月考數(shù)學(xué)文科試題 題型:044

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.

(1)若直線l過點(diǎn)P且與圓心C的距離為1,求直線l的方程;

(2)設(shè)過點(diǎn)P的直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線段MN為直徑的圓Q的方程;

(3)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省新海高級(jí)中學(xué)2010屆高三上學(xué)期期末考試數(shù)學(xué)試卷 題型:044

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.

(Ⅰ)若直線l過點(diǎn)P且與圓心C的距離為1,求直線l的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線段MN為直徑的圓Q的方程;

(Ⅲ)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市七校高二上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題12分)

已知點(diǎn)P(2,0)及圓C:.

(1)若直線過點(diǎn)P且與圓心C的距離為1,求直線的方程.

(2)設(shè)直線與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)P(2,0)的直線垂直平

     分弦AB. 若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題12分)

已知點(diǎn)P(2,0)及圓C:.

(1)若直線過點(diǎn)P且與圓心C的距離為1,求直線的方程.

(2)設(shè)直線與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)P(2,0)的直線垂直平

     分弦AB. 若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案