(文)若點(diǎn)F1,F(xiàn)2為橢圓的焦點(diǎn),P為橢圓上的點(diǎn),滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4
【答案】分析:由橢圓方程⇒點(diǎn)F1(-,0),F(xiàn)2,0);又∠F1PF2=90°,故點(diǎn)P也在以原點(diǎn)為圓心,為半徑的圓x2+y2=3上,兩曲線方程聯(lián)立,可求得點(diǎn)P的縱坐標(biāo),△F1PF2的面積可求.
解答:解:由橢圓方程得焦點(diǎn)F1(-,0),F(xiàn)2,0),設(shè)P(x,y
∵∠F1PF2=90°,
∴點(diǎn)P在以原點(diǎn)為圓心,為半徑的圓x2+y2=3上,
解得y2=,即|y|=
=|F1F2|•|y|==1.
故選A.
點(diǎn)評:本題考查橢圓的簡單性質(zhì),關(guān)鍵在于對題意的理解與方法的選擇,除上邊的方程組法,也可以設(shè)|PF1|=x,|PF2|=2a-x,在直角△F1PF2中求得x,再求其面積,也可以用向量法解決,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)若點(diǎn)F1,F(xiàn)2為橢圓
x2
4
+y2=1
的焦點(diǎn),P為橢圓上的點(diǎn),滿足∠F1PF2=90°,則△F1PF2的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)若點(diǎn)F1,F(xiàn)2為橢圓
x2
4
+y2=1
的焦點(diǎn),P為橢圓上的點(diǎn),滿足∠F1PF2=90°,則△F1PF2的面積為( 。
A.1B.2C.
1
2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省葫蘆島二中高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

(文)若點(diǎn)F1,F(xiàn)2為橢圓的焦點(diǎn),P為橢圓上的點(diǎn),滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都外國語學(xué)校AP國際部高二(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

(文)若點(diǎn)F1,F(xiàn)2為橢圓的焦點(diǎn),P為橢圓上的點(diǎn),滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4

查看答案和解析>>

同步練習(xí)冊答案