【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:)
A. 2B. C. 4D.
科目:高中數(shù)學 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止時其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,焦點為,準線為,線段的中點為.點是上在軸上方的一點,且點到的距離等于它到原點的距離.
(1)求點的坐標;
(2)過點作一條斜率為正數(shù)的直線與拋物線從左向右依次交于兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:的離心率為,且過點 (,),點 P 在第四象限, A 為左頂點, B 為上頂點, PA 交 y 軸于點 C,PB 交 x 軸于點 D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓經過點,離心率為.
(1)求的方程;
(2)過的左焦點且斜率不為的直線與相交于,兩點,線段的中點為,直線與直線相交于點,若為等腰直角三角形,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)的圖象在處的切線為,當實數(shù)變化時,求證:直線經過定點;
(Ⅱ)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線()的焦點為,以拋物線上一動點為圓心的圓經過點F.若圓的面積最小值為.
(Ⅰ)求的值;
(Ⅱ)當點的橫坐標為1且位于第一象限時,過作拋物線的兩條弦,且滿足.若直線AB恰好與圓相切,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,“大衍數(shù)列”:來源于《乾坤譜》中對《易傳》“大衍之數(shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生過程中曾經經歷過的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的( )
A. 64 B. 68 C. 100 D. 140
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經過點,離心率為.
()求橢圓的方程.
()直線與橢圓交于,兩點,點是橢圓的右頂點.直線與直線分別與軸交于點,兩點,試問在軸上是否存在一個定點使得?若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com