已知定直線l:x=1和定點(diǎn)M(t,0)(t∈R),動(dòng)點(diǎn)P到M的距離等于點(diǎn)P到直線l距離的2倍.
(1)求動(dòng)點(diǎn)P的軌跡方程,并討論它表示什么曲線;
(2)當(dāng)t=4時(shí),設(shè)點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)M作傾斜角為θ(θ>0)的直線交曲線C于A、B兩點(diǎn),直線l與x軸交于點(diǎn)N.若點(diǎn)N恰好落在以線段AB為直徑的圓上,求θ的值.
分析:(1)設(shè)P(x,y),則由題意得
(x-t)2+y2
=2|x-1|,化簡(jiǎn)得3x2-y2+2(t-4)x+4-t2=0,由此能夠確定動(dòng)點(diǎn)P的軌跡方程和它表示的曲線.
(2)當(dāng)t=4時(shí),C:
x2
4
-
y2
12
=1
,M(4,0),N(1,0).由題意知 NA⊥NB,所以
NA
NB
=0
,設(shè)A(x1,y1),B(x2,y2),則當(dāng)AB與x軸垂直時(shí),不合題意;當(dāng)AB與x軸不垂直時(shí),設(shè)AB:y=k(x-4),代入雙曲線方程并整理得:(3-k2)x2+8k2x-16k2-12=0,由此能夠求出θ的值.
解答:解:(1)設(shè)P(x,y),則由題意得
(x-t)2+y2
=2|x-1|,
化簡(jiǎn)得3x2-y2+2(t-4)x+4-t2=0,
3(x+
t-4
3
)2-y2=
(t-1)2
3
,…(4分)
當(dāng)t=1時(shí),化簡(jiǎn)得 y=±
3
(x-1),表示兩條直線;
當(dāng)t≠1時(shí),表示焦點(diǎn)在x軸上的雙曲線.…(6分);
(2)當(dāng)t=4時(shí),C:
x2
4
-
y2
12
=1
,M(4,0),N(1,0).
由題意知 NA⊥NB,
所以
NA
NB
=0
,…(8分);
設(shè)A(x1,y1),B(x2,y2),
則當(dāng)AB與x軸垂直時(shí),
NA
NB
≠0
,不合題意;
當(dāng)AB與x軸不垂直時(shí),設(shè)AB:y=k(x-4),代入雙曲線方程并整理得:
(3-k2)x2+8k2x-16k2-12=0,
NA
NB
=0
得(x1-1)(x2-2)+y1y2=0
所以  (k2+1)x1x2-(4k2+1)(x1+x2)+16k2+1=0,
化簡(jiǎn)整理得k2=
1
3
,
所以k=±
3
3
3
,…(11分)
經(jīng)檢驗(yàn),均符合題意.
所以θ=30°或150°.…(12分)
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?jiǎng)訄A過(guò)定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(Ⅰ)求動(dòng)圓圓心的軌跡M的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P,且斜率為-
3
的直線與曲線M相交于A,B兩點(diǎn).
(i)問(wèn):△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說(shuō)明理由;
(ii)當(dāng)△ABC為鈍角三角形時(shí),求這種點(diǎn)C的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)A(1,0)和定直線l:x=-1,在l上有兩動(dòng)點(diǎn)E,F(xiàn)且滿(mǎn)足
AE
AF
,另有動(dòng)點(diǎn)P,滿(mǎn)足
EP
OA
,
FO
OP
(O為坐標(biāo)原點(diǎn)),且動(dòng)點(diǎn)P的軌跡方程為( 。
A、y2=4x
B、y2=4x(x≠0)
C、y2=-4x
D、y2=-4x(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,焦點(diǎn)在x軸上的橢圓的離心率為
3
2
,上頂點(diǎn)A(0,1),下頂點(diǎn)為B,已知定直線l:y=2,若點(diǎn)P是橢圓上異于點(diǎn)A、B的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)M,連接PB并延長(zhǎng)交直線 l 于點(diǎn)M,
(1)求MN的最小值;
(2)證明以MN為直徑的圓恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省贛南師院附中高三(上)10月月考數(shù)學(xué)試卷(實(shí)驗(yàn)班)(解析版) 題型:解答題

已知定直線l:x=1和定點(diǎn)M(t,0)(t∈R),動(dòng)點(diǎn)P到M的距離等于點(diǎn)P到直線l距離的2倍.
(1)求動(dòng)點(diǎn)P的軌跡方程,并討論它表示什么曲線;
(2)當(dāng)t=4時(shí),設(shè)點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)M作傾斜角為θ(θ>0)的直線交曲線C于A、B兩點(diǎn),直線l與x軸交于點(diǎn)N.若點(diǎn)N恰好落在以線段AB為直徑的圓上,求θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案