【題目】已知函數(shù).
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)若,記函數(shù)是函數(shù)的兩個(gè)極值點(diǎn),且的最小值.
【答案】(Ⅰ)當(dāng),的單調(diào)遞增區(qū)間為;時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (Ⅱ).
【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出g(x1)-g(x2)的解析式,結(jié)合函數(shù)的單調(diào)性以及二次函數(shù)的性質(zhì)求出其最小值即可.
(Ⅰ)的定義域?yàn)?/span>,
①時(shí),,∴在上單調(diào)遞增.
② 時(shí),由得,∴在上單調(diào)遞增
由得,∴在上單調(diào)遞減
綜上所述:①當(dāng),的單調(diào)遞增區(qū)間為;
②時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(Ⅱ)
,
∵是函數(shù)的兩個(gè)極值點(diǎn),
∴是方程的兩根
由韋達(dá)定理可知,
∵,∴
又,
且在上單調(diào)遞減,
可知,所以
設(shè)
所以,,所以單調(diào)遞減.
故
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在非負(fù)數(shù)構(gòu)成的數(shù)表中,每行的數(shù)互不相同,前六列中每列的三數(shù)之和為1,均大于1.如果的前三列構(gòu)成的數(shù)表滿足下面的性質(zhì):對(duì)于數(shù)表中的任意一列()均存在某個(gè)使得.①
求證:(1)最小值()一定去自數(shù)表的不同列;
(2)存在數(shù)表中唯一的一列()使得數(shù)表仍然具有性質(zhì)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an=n2-n-30.
(1)求數(shù)列的前三項(xiàng),60是此數(shù)列的第幾項(xiàng)?
(2)n為何值時(shí),an=0,an>0,an<0?
(3)該數(shù)列前n項(xiàng)和Sn是否存在最值?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,短軸長(zhǎng)為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn),之間).
(1)求橢圓的方程;
(2)若,求實(shí)數(shù)的取值范圍;
(3)若射線交橢圓于點(diǎn)(為原點(diǎn)),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取3人,設(shè)表示這3人中成績(jī)滿足的人數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在同一個(gè)周期內(nèi),當(dāng)時(shí)y取最大值1,當(dāng)時(shí),y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績(jī)中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com