如圖,垂直于矩形所在平面,,.
(1)求證:;
(2)若矩形的一個(gè)邊,,則另一邊的長為何值時(shí),三棱錐的體積為?
(1)證明詳見解析;(2)當(dāng)時(shí),三棱錐的體積為.
解析試題分析:(1)要證面,只須在平面內(nèi)找一條直線與平行,過點(diǎn)作的平行線交于點(diǎn),連接,就是所要找的直線,這時(shí)只須充分利用題中的平行條件即可證明,從而問題得證;(2)由(1)的證明過程得到且,在中,先利用、確定,進(jìn)一步算出,從而就確定了三棱錐的底面積,由題中的垂直條件易得平面,再由所給的體積及三棱錐的體積計(jì)算公式可求出的長度,問題得以解決.
試題解析:(1)過點(diǎn)作的平行線交于點(diǎn),連接,則
四邊形是平行四邊形
且,又且
且
四邊形也是平行四邊形
,平面,面
面 6分
(2)由(1)可知且面
在中,,,得且
由可得,從而得
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/7/5r3ia1.png" style="vertical-align:middle;" />,,所以平面
,而且
所以
綜上,當(dāng)時(shí),三棱錐的體積為 12分.
考點(diǎn):1.空間中的平行關(guān)系;2.三棱錐的體積計(jì)算公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的長方體中,底面是邊長為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱中, , ,是的中點(diǎn),△是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn).
(1)證明:BC1//平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點(diǎn),是棱的中點(diǎn),.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形中,,.把沿折起到的位置,使得點(diǎn)在平面上的正投影恰好落在線段上,如圖2所示,點(diǎn)分別為棱的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面;
(3)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.
(1)求證:平面
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖(1)所示,⊙O的直徑AB=4,點(diǎn)C,D為⊙O上兩點(diǎn),且∠CAB=45°,∠DAB=60°,F(xiàn)為的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖(2)所示).
(1)求證:OF∥平面ACD;
(2)在上是否存在點(diǎn)G,使得FG∥平面ACD?若存在,試指出點(diǎn)G的位置,并求點(diǎn)G到平面ACD的距離;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com