已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,實(shí)軸長.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點(diǎn),且為銳角(其中為原點(diǎn)),求的取值范圍.
(1);(2).
解析試題分析:(1)依題意先設(shè)雙曲線的方程為,依據(jù)題中條件得到、的值,進(jìn)而由得到的值,進(jìn)而寫出雙曲線的方程即可;(2)設(shè),聯(lián)立直線與雙曲線的方程,消去得到,依題意得到,且,要使為銳角,只須即可,從而只須將進(jìn)行坐標(biāo)化并將代入,得到,結(jié)合、及即可得出的取值范圍.
試題解析:(1)依題意可設(shè)雙曲線的方程為
則有且,所以,
所以該雙曲線的方程為
(2)
設(shè)
,即
綜上:.
考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì);2.直線與雙曲線的綜合問題;3.平面向量數(shù)量積的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過P作x軸的垂線,垂足為C,連結(jié)AC,并延長交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時,求點(diǎn)P到直線AB的距離d;
(3)對任意k>0,求證:PA⊥PB..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時,求證:直線MN經(jīng)過一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓=1(a>b>0),點(diǎn)P在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.
(1)求橢圓的方程;
(2)是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為.問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,=.
(1) 求直線BD的方程;
(2) 求直線BD被過P、A、B三點(diǎn)的圓C截得的弦長;
(3) 是否存在分別以PB、PA為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C1:+=1(a>b>0),拋物線C2:x2+by=b2.
(1)若C2經(jīng)過C1的兩個焦點(diǎn),求C1的離心率;
(2)設(shè)A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個交點(diǎn),若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時,求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動時,求|AF|·|BF|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com