若函數(shù)f(x)是定義域為R,最小正周期是
2
的函數(shù),且當0≤x≤π時,f(x)=sinx,則f(-
15π
4
)
=
 
分析:由函數(shù)的周期是
2
,可得f(-
15π
4
)
=f(
4
),再由當0≤x≤π時,f(x)=sinx,可得f(
4
)=sin
4
的值
解答:解:由函數(shù)的周期是
2
,可得f(-
15π
4
)
=f(-
15π
4
+3×
2
)=f(
4
),
再由當0≤x≤π時,f(x)=sinx,可得f(
4
)=sin
4
=
2
2
,
故答案為
2
2
點評:本題主要考查利用函數(shù)的周期性求函數(shù)的值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(-3)=0,則使得x[f(x)+f(-x)]<0的x的取值范圍是
(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對一切x>0,y>0滿足f(xy)=f(x)+f(y),則不等式f(x+6)+f(x)≤2f(4)的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-x+1,則x<0時,f(x)的表達式是
f(x)=-x2-x-1,(x<0)
f(x)=-x2-x-1,(x<0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的奇函數(shù),在(-∞,0)上為減函數(shù),且f(2)=0,則使得f(x)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),則使得f(x)<f(2)的x取值范圍是
x>2或x<-2
x>2或x<-2

查看答案和解析>>

同步練習冊答案