二次函數(shù)f(x)=ax2+bx+1,(a>0),設f(x)=x的兩個實根為x1,x2,
(1)如果b=2且|x2-x1|=2,求a的值;
(2)如果x1<2<x2<4,設函數(shù)f(x)的對稱軸為x=x0,求證:x0>-1.
分析:(1)利用韋達定理可表示出x2+x1和x2•x1,進而利用配方法求得|x2-x1|2的表達式,進而利用已知條件求得a.
(2)根據(jù)根的分布推斷出f(2)<0且f(4)>0,整理不等式組求得a和b的不等式關系,進而表示出對稱軸,求x0的范圍,證明原式.
解答:解:(1)b=2,f(x)=ax2+2x+1,(a>0),又f(x)=x的兩個實根為x1,x2
∴x2+x1=-
1
a
,x2•x1=
1
a

∵|x2-x1|2=(x2+x12-4x2•x1=
4
a2
-
4
a
=4

解得:a=
5
-1
2

(2)依題意可知
f(2)<0
f(4)>0

4a+2b+1<2
16a+4b+1>4

整理求得2a>b
b
a
<2
∵函數(shù)f(x)的對稱軸為x=x0,
∴x0=-
b
2a

∴x0>-1
點評:本題主要考查了一元二次方程的根據(jù)的分布與系數(shù)的關系.考查了二次函數(shù)的性質(zhì)以及方程和函數(shù)的思想的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=a(x+1)2+4-a,其中a為常數(shù)且0<a<3.取x1,x2滿足:x1>x2,x1+x2=1-a,則f(x1)與f(x2)的大小關系為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),則實數(shù)m、n、α、β的大小關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教B版高中數(shù)學必修一2.4函數(shù)的零點練習卷(一)(解析版) 題型:解答題

已知二次函數(shù)f(x)=a+bx(a,b是常數(shù)且a0)滿足條件:f(2)=0.方程f(x)=x有等根

(1)求f(x)的解析式;

(2)問:是否存在實數(shù)m,n使得f(x)定義域和值域分別為[m,n]和

[2m,2n],如存在,求出m,n的值;如不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)f(x)=a(x+1)2+4-a,其中a為常數(shù)且0<a<3.取x1,x2滿足:x1>x2,x1+x2=1-a,則f(x1)與f(x2)的大小關系為( 。
A.不確定,與x1,x2的取值有關
B.f(x1)>f(x2
C.f(x1)<f(x2
D.f(x1)=f(x2

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年廣東省陽江市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

已知二次函數(shù)f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),則實數(shù)m、n、α、β的大小關系是( )
A.m<α<β<n
B.α<m<n<β
C.m<α<n<β
D.α<m<β<n

查看答案和解析>>

同步練習冊答案