【題目】中心在原點,焦點在軸上的橢圓,下頂點,且離心率.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)經(jīng)過點且斜率為的直線交橢圓于, 兩點.在軸上是否存在定點,使得恒成立?若存在,求出點坐標;若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y=2sin(2x﹣ )的一條對稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點( ,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④存在實數(shù)α,使 sin(α+ )=
以上四個命題中正確的有(填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我省城鄉(xiāng)居民社會養(yǎng)老保險個人年繳費分100,200,300,400,500,600,700,800,900,1000(單位:元)十個檔次,某社區(qū)隨機抽取了50名村民,按繳費在100:500元,600:1000元,以及年齡在20:39歲,40:59歲之間進行了統(tǒng)計,相關(guān)數(shù)據(jù)如下:
100﹣500元 | 600﹣1000 | 總計 | |
20﹣39 | 10 | 6 | 16 |
40﹣59 | 15 | 19 | 34 |
總計 | 25 | 25 | 50 |
(1)用分層抽樣的方法在繳費100:500元之間的村民中隨機抽取5人,則年齡在20:39歲之間應(yīng)抽取幾人?
(2)在繳費100:500元之間抽取的5人中,隨機選取2人進行到戶走訪,求這2人的年齡都在40:59歲之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且對任意非負整數(shù)均有: .
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, , 為的中點, ,四棱錐的體積為.
(Ⅰ)求證: 平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知幾何體P﹣ABCD如圖,面ABCD為矩形,面ABCD⊥面PAB,且面PAB為正三角形,若AB=2,AD=1,E、F分別為AC、BP中點,
(Ⅰ)求證:EF∥面PCD;
(Ⅱ)求直線BP與面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足Sn=2n﹣an(n∈N*).
(1)計算a1 , a2 , a3 , a4 , 并由此猜想通項公式an;
(2)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡單范疇,賦予了旅游促進跨區(qū)域融合的新理念. 而其帶來的設(shè)施互通、經(jīng)濟合作、人員往來、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來巨大的發(fā)展機遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數(shù),統(tǒng)計得到莖葉圖如下:
(1)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內(nèi)任取4天,記其中游客數(shù)超過130人的天數(shù)為,求概率 ;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足c cosB=(2a+b)cos(π﹣C).
(1)求角C的大;
(2)若c=4,△ABC的面積為,求a+b的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com