已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個不同的極值點.其極小值為M,試比較2M與一3的大小,并說明理由;
(3)設q>p>2,求證:當x∈(p,q)時,.

(1);(2);(3)證明過程詳見解析.

解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)研究函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的極值和最值、利用導數(shù)求曲線的切線方程等數(shù)學知識,考查學生分析問題解決問題的能力、轉(zhuǎn)化能力和計算能力.第一問,先對求導,將代入到中得到切線的斜率,將代入到中得到切點的縱坐標,最后利用點斜式,直接寫出切線方程;第二問,對求導,由于有2個不同的極值點,所以有2個不同的根,即有兩個不同的根,所以,可以解出a的取值范圍,所以根據(jù)的單調(diào)性判斷出為極小值,通過函數(shù)的單調(diào)性求最值,從而比較大小;第三問,用分析法證明分析出只須證,構造函數(shù),利用函數(shù)的單調(diào)性證明,同理再證明,最后利用不等式的傳遞性得到所證不等式.
試題解析:(1)易知,∴ 
∴所求的切線方程為,即 4分
(2)易知,
有兩個不同的極值點
有兩個不同的根
 解得               6分
遞增,遞減,遞增
的極小值
又∵

,∴遞減
,故                        9分
(3)先證明:當時,
即證:
只需證:
事實上,設
易得,∴內(nèi)遞增
  即原式成立                        12分
同理可以證明當時,   
綜上當時,.             14分
考點:1.利用導數(shù)判斷函數(shù)的單調(diào)性;2.利用導數(shù)求函數(shù)的極值和最值;3.利用導數(shù)求曲線的切線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若曲線在點處的切線與直線平行,求實數(shù)的值;
(2)若函數(shù)處取得極小值,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.
(1)當取到極值,求的值;
(2)當滿足什么條件時,在區(qū)間上有單調(diào)遞增的區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)設,,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(3)過坐標原點作曲線的切線,證明:切點的橫坐標為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)當時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取得極值2
(1)求函數(shù)的表達式;
(2)當滿足什么條件時,函數(shù)在區(qū)間上單調(diào)遞增?
(3)若圖象上任意一點,直線與的圖象相切于點P,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)、為常數(shù)),在時取得極值.
(1)求實數(shù)的值;
(2)當時,求函數(shù)的最小值;
(3)當時,試比較的大小并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某一運動物體,在x(s)時離出發(fā)點的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時速度;
(3)經(jīng)過多少時間該物體的運動速度達到14m/s?

查看答案和解析>>

同步練習冊答案