(本題滿分12分) 已知函數(shù)=,在x=1處取得極值為2.(1)求函數(shù)的解析式;(2)若函數(shù)在區(qū)間(m,2m+1)上為增函數(shù),求實數(shù)m的取值范圍;(3)若P(x0,y0)為=圖象上的任意一點,直線l與=的圖象相切于點P,求直線l的斜率的取值范圍.
(1) (2)m∈(-1,0)
(1)已知函數(shù)=,∴ =,
又函數(shù)f(x)在x=1處取得極值2,∴即∴=.
(2)∵==.由>0,得4-4x2>0,即-1<x<1,
所以= 的單調(diào)增區(qū)間為(-1,1).因函數(shù)在(m,2m+1)上單調(diào)遞增,則有解得-1<m≤0,即m∈(-1,0)時,函數(shù)在(m,2m+1)上為增函數(shù).
(3)=,∴=,
直線l的斜率為k===4[].
令=t,t∈(0,1),則直線l的斜率k=4(2t2-t),t∈(0,1)∴k∈[-,4],即直線l的斜率k的取值范圍是[-,4][或者由k=轉(zhuǎn)化為關(guān)于x02的方程,根據(jù)該方程有非負根求解]
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com