若x,y∈R,且
x≥1
x-2y+3≥0
y≥x
,則z=x+2y的最小值等于______.
約束條件
x≥1
x-2y+3≥0
y≥x
,對(duì)應(yīng)的平面區(qū)域如下圖示:
當(dāng)直線Z=x+2y過點(diǎn)(1,1)時(shí),z=x+2y取最小值3,
故答案為:3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x、y滿足以下約束條件
2x+y-2≥0
x-2y+4≤0
3x-y-3≤0
,則z=x2+y2的最大值和最小值分別是(  )
A.13,1B.13,2C.13,
4
5
D.
13
,
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不等式組
y≤x
y≥-x
x≤a
,表示的平面區(qū)域的面積為4,點(diǎn)P(x,y)在所給平面區(qū)域內(nèi),則z=2x+y的最大值為( 。
A.3B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某小型餐館一天中要購買A,B兩種蔬菜,A,B蔬菜每公斤的單價(jià)分別為2元和3元.根據(jù)需要,A蔬菜至少要買6公斤,B蔬菜至少要買4公斤,而且一天中購買這兩種蔬菜的總費(fèi)用不能超過60元.
(1)寫出一天中A蔬菜購買的公斤數(shù)x和B蔬菜購買的公斤數(shù)y之間的滿足的不等式組;并在給定的坐標(biāo)系中畫出不等式組表示的平面區(qū)域(用陰影表示),
(2)如果這兩種蔬菜加工后全部賣出,A,B兩種蔬菜加工后每公斤的利潤(rùn)分別為2元和1元,餐館如何采購這兩種蔬菜使得利潤(rùn)最大,利潤(rùn)最大為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若x,y滿足2x+y-2≤0,且y2-2x≤0,則z=x+y的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

不等式組
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
表示的平面區(qū)域記為C.
(1)畫出平面區(qū)域C,并求出C包含的整點(diǎn)個(gè)數(shù);
(2)求平面區(qū)域C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知|2x-y+m|<3表示的平面區(qū)域包含點(diǎn)(0,0)和(-1,1),則m的取值范圍是(  )
A.(-3,6)B.(0,6)C.(0,3)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若x,y滿足約束條件
y+x≤1
y-3x≤1
y-x≥-1
,則目標(biāo)函數(shù)z=2x+y的最大值是( 。
A.-3B.
3
2
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實(shí)數(shù)x,y滿足
y-1≥0
x+y≤5
2x-y≥1
,則
y
x
的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案