【題目】已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且

(1)求拋物線C的方程;

(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過拋物線焦點(diǎn)F的直線l與拋物線C交于AB,且,求的值.

【答案】(1) (2)4

【解析】

(1)將點(diǎn)P橫坐標(biāo)代入拋物線中求得點(diǎn)P的坐標(biāo),利用點(diǎn)P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點(diǎn)坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計(jì)算的值即可.

(1)將點(diǎn)P橫坐標(biāo)代入中,求得,

P(2,),

點(diǎn)P到準(zhǔn)線的距離為

,

,

解得,∴,

∴拋物線C的方程為:;

(2)拋物線的焦點(diǎn)為F(0,1),準(zhǔn)線方程為,

設(shè)

直線AB的方程為,代入拋物線方程可得

,…①

,可得

,

,

,…②

把①代入②得,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四年來一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量(單位:萬只)與相應(yīng)年份(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)yx有較強(qiáng)的線性相關(guān)關(guān)系.

年份序號(hào)

年養(yǎng)殖山羊/萬只

1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求關(guān)于的線性回歸方程(參考統(tǒng)計(jì)量:,

2)李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)(單位:個(gè))關(guān)于的回歸方程.

試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國(guó)語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

(2)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

附:

0.050

0.010

0.001

3.841

6.635

10.828

則下列說法正確的是(

A.以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

B.以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

C.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點(diǎn),且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點(diǎn)都在圓.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若經(jīng)過點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案