【題目】如圖,已知A為左頂點,F是左焦點,l交OA的延長線于點B,點P,Q在橢圓上,有PD⊥l于點D,QF⊥AO,則橢圓的離心率是① ; ② ; ③ ; ④ ; ⑤ 其中正確的是(

A.①②
B.①③④
C.②③⑤
D.①②③④⑤

【答案】D
【解析】解答:① 符合離心率定義;②過點Q作QC⊥l于C,∵QC=FB,∴ 符合離心率定義;③∵AO=a,BO= ,∴ ,故 也是離心率;④∵AF=a-c,AB= -a,∴ ,∴ 是離心率;⑤∵FO=c,AO=a,∴ 是離心率.∴①②③④⑤的表述均正確,故選D. 分析:本題主要考查了平面與圓柱面的截線,解決問題的關(guān)鍵是根據(jù)平面與圓柱面的截線的性質(zhì)結(jié)合所給幾何關(guān)系分析計算即可判斷

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)=﹣
(1)求函數(shù)f(x)的解析式
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2+x),g(x)=ln(2﹣x)
(1)判斷函數(shù)h(x)=f(x)﹣g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個數(shù)是( )
①向量 是共線向量,則A、B、C、D必在同一直線上;
②向量 與向量 平行,則 方向相同或相反;
③若下列向量 、 滿足 ,且 同向,則 ;
④若 ,則 的長度相等且方向相同或相反;
⑤由于零向量方向不確定,故不能與任何向量平行.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一大學(xué)生自主創(chuàng)業(yè),擬生產(chǎn)并銷售某電子產(chǎn)品萬件(生產(chǎn)量與銷售量相等),為擴大影響進行促銷,促銷費用萬元滿足(其中為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為/.

1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,此大學(xué)生所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的方格紙由若干個邊長為1的小正方形并在一起組成,方格紙中有兩個定點A,B,點C為小正方形的頂點,且
(1)畫出所有的向量 ;
(2)求| |的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

直角坐標系中曲線的參數(shù)方程為參數(shù)),在以坐標原點為極點, 軸正半軸為極軸的極坐標系中, 點的極坐標,在平面直角坐標系中,直線經(jīng)過點,傾斜角為

(1)寫出曲線的直角坐標方程和直線的參數(shù)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),則實數(shù)a的取值范圍是(
A.
B.(0,+∞)
C.
D.

查看答案和解析>>

同步練習(xí)冊答案