【題目】設(shè)p:實(shí)數(shù)x滿足,其中a≠0,q:實(shí)數(shù)x滿足.

(I)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.

(II)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

【答案】(1)(2,3),(2) a∈(1,2]

【解析】試題分析:(1)化簡條件p,q,根據(jù)p∧q為真,可求出;

(2)化簡命題,寫成集合,由題意轉(zhuǎn)化為(2,3](3a,a)即可求解.

試題解析:

(I)由,得q:2<x≤3.

當(dāng)a=1時,由x2-4x+3<0,得p:1<x<3,

因?yàn)閜∧q為真,所以p真,q真.

所以實(shí)數(shù)x的取值范圍是(2,3).

(II)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.

①當(dāng)a>0時,p:a<x<3a,

由題意,得(2,3](a,3a),所以即1<a≤2;

②當(dāng)a<0時,p:3a<x<a,

由題意,得(2,3](3a,a),所以無解.

綜上,可得a∈(1,2].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大理石工廠初期花費(fèi)98萬元購買磨大理石刀具,第一年需要各種費(fèi)用12萬元,從第二年起,每年所需費(fèi)用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)結(jié)論正確的個數(shù)為( )

①小趙、小錢、小孫、小李到4個景點(diǎn)旅游,每人只去一個景點(diǎn),設(shè)事件=“4個人去的景點(diǎn)不相同”,事件 “小趙獨(dú)自去一個景點(diǎn)”,則

②設(shè)函數(shù)存在導(dǎo)數(shù)且滿足,則曲線在點(diǎn)處的切線斜率為-1;

③設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值分別為;

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以 , , , , 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計(jì)總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形,

(1)證明: ;

(2)若在平面內(nèi)的正投影為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3萬元、2萬元,甲、乙產(chǎn)品都需要在兩種設(shè)備上加工,在每臺上加工1件甲所需工時分別是1、2,加工1件乙所需工時分別為2、1, 兩種設(shè)備每月有效使用臺時數(shù)分別為400500,如何安排生產(chǎn)可使收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,(a>0).
(1)當(dāng)a=2時,證明函數(shù)f(x)不是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若f(x)是奇函數(shù),且f(x)﹣x2+4x≥m在x∈[﹣2,2]時恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x=1處的切線與直線平行。

(Ⅰ)求a的值并討論函數(shù)y=f(x)上的單調(diào)性。

(Ⅱ)若函數(shù) (為常數(shù))有兩個零點(diǎn),

(1)m的取值范圍;

(2)求證:

查看答案和解析>>

同步練習(xí)冊答案