已知圓的方程為:,直線的方程為,點在直線上,過點作圓的切線,切點為.
(1)若,求點的坐標(biāo);
(2)若點的坐標(biāo)為,過點的直線與圓交于兩點,當(dāng)時,求直線的方程;
(3)求證:經(jīng)過(其中點為圓的圓心)三點的圓必經(jīng)過定點,并求出所有定點的坐標(biāo).
(1)或;(2)或;(3)該圓必經(jīng)過定點和.
解析試題分析:(1)由題中條件,在直角三角形中計算出,設(shè)點,然后將坐標(biāo)化,求解關(guān)于的方程,最后寫出點的坐標(biāo)即可;(2)先由弦長計算出圓心到直線的距離,設(shè)的方程為,最后由點到直線的距離公式即可求出的取值,進而寫出直線的方程即可;(3)設(shè),過點的圓即是以為直徑的圓,從而得到該圓的方程,根據(jù)其方程是關(guān)于的恒等式,列出方程組,求解可得,得到經(jīng)過三點的圓必過定點的坐標(biāo).
試題解析:(1)由條件可得,設(shè),則,解得或,所以點或點
(2)由已知圓心到直線的距離為,設(shè)直線的方程為,則,解得或
所以直線的方程為或
(3)設(shè),過點的圓即是以為直徑的圓,其方程為:
,整理得
即
由得或,該圓必經(jīng)過定點和.
考點:直線與圓的方程的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C0:(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l1、l2分別與拋物線x2=4y相切于點A、B,且A、B兩點的橫坐標(biāo)分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點R,經(jīng)過P、Q、R三點作圓C.
①當(dāng)a=4,b=-2時,求圓C的方程;
②當(dāng)a,b變化時,圓C是否過定點?若是,求出所有定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,設(shè)點是直線上的兩點,它們的橫坐標(biāo)分別是,點在線段上,過點作圓的切線,切點為.
(1)若,求直線的方程;
(2)經(jīng)過三點的圓的圓心是,求線段(為坐標(biāo)原點)長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com