【題目】甲、乙兩人各擲一個均勻的骰子,觀察朝上的面的點數(shù),記事件A:甲得到的點數(shù)為2,B:乙得到的點數(shù)為奇數(shù).

1)求,,,判斷事件AB是否相互獨立;

2)求.

【答案】1,,AB相互獨立;(2.

【解析】

1)根據(jù)古典槪型的概率公式計算可得,,,再根據(jù)可判斷出AB是相互獨立的.

2)由AB相互獨立可知,B也相互獨立,再根據(jù)相互獨立事件的乘法公式可得.

解:如果用表示甲得到的點數(shù)為i,乙得到的點數(shù)為j,則樣本空間可以記為

,

而且這個樣本空間可用圖直觀表示.

1)不難看出,圖中,A框中的點代表事件框中的點代表事件B.

因此,可以算出,.

又因為,所以.

因為,所以AB相互獨立.

2)由AB相互獨立可知,B也相互獨立,

因此.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,底面是矩形,,中點,點邊上.

(1)求三棱錐的體積;

(2)求證:;

(3)若平面,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】朱世杰是歷史上最偉大的數(shù)學家之一,他所著的《四元玉鑒》卷中如像招數(shù)五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人,每人日支米三升。其大意為官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3,在該問題中第3天共分發(fā)大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為保證學生夜晚安全,實行教師值夜班制度,已知共5名教師每周一到周五都要值一次夜班,每周如此,且沒有兩人同時值夜班,周六和周日不值夜班,若昨天值夜班,從今天起至少連續(xù)4天不值夜班, 周四值夜班,則今天是周___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的單調性,不需要說明理由.

2)判斷函數(shù)的奇偶性,并說明理由.

3)對于任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若曲線與直線滿足:①在某點處相切;②曲線附近位于直線的異側,則稱曲線與直線“切過”.下列曲線和直線中,“切過”的有________.(填寫相應的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高三理科班共有60名同學參加某次考試,從中隨機挑選出5名同學,他們的數(shù)學成績與物理成績如下表:

數(shù)學成績

145

130

120

105

100

物理成績

110

90

102

78

70

數(shù)據(jù)表明之間有較強的線性關系

(I)關于的線性回歸方程;

(II)該班一名同學的數(shù)學成績?yōu)?10分,利用(I)中的回歸方程,估計該同學的物理成績;

(III)本次考試中,規(guī)定數(shù)學成績達到125分為優(yōu)秀,物理成績達到100分為優(yōu)秀. 若

該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為50%和60%,且除去抽走的5名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有5人,在答卷頁上填寫下面2×2列聯(lián)表,判斷能否在犯錯誤的概率不超過0.01的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關?

物理優(yōu)秀

物理不優(yōu)秀

合計

數(shù)學優(yōu)秀

數(shù)學不優(yōu)秀

合計

60

參考數(shù)據(jù):回歸直線的系數(shù)

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),已知曲線在原點處的切線相同.

(1)求的單調區(qū)間

(2),恒成立的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左、右頂點,為其右焦點,是橢圓上異于的動點,且面積的最大值為.

(1)求橢圓的方程;

(2)直線與橢圓在點處的切線交于點,當點在橢圓上運動時,求證:以 為直徑的圓與直線恒相切.

查看答案和解析>>

同步練習冊答案