已知公差不為0的等差數(shù)列的前n項和為,,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前n項和.
(1);(2)
解析試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎知識,考查化歸與轉化思想,考查思維能力、分析問題與解決問題的能力和計算能力.第一問,利用等差數(shù)列的通項公式,前n項和公式將展開,利用等比中項得出,再利用通項公式將其展開,兩式聯(lián)立解出和,從而得出數(shù)列的通項公式;第二問,將第一問的結論代入,再利用等比數(shù)列的定義證明數(shù)列是等比數(shù)列,利用分組求和法,求出的值.
試題解析:(Ⅰ)設等差數(shù)列的公差為.
因為,所以. ①
因為成等比數(shù)列,所以. ② 2分
由①,②可得:. 4分
所以. 6分
(Ⅱ)由題意,設數(shù)列的前項和為,,
,所以數(shù)列為以為首項,以為公比的等比數(shù)列 9分
所以 12分
考點:1.等差數(shù)列的通項公式;2. 等比數(shù)列的通項公式;3. 等差數(shù)列的前n項和公式;4.等比數(shù)列的前n項和公式;5.等比中項;6.分組求和法.
科目:高中數(shù)學 來源: 題型:解答題
已知首項為的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設Tn=Sn-(n∈N*),求數(shù)列{Tn}的最大項的值與最小項的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列是公差不為零的等差數(shù)列,,且是和的等比中項.
(1)求數(shù)列的通項公式;
(2)設數(shù)列的前項和為,,試問當為何值時,最大?并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項公式:
(2)設,求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列滿足,,,是數(shù)列 的前項和.
(1)若數(shù)列為等差數(shù)列.
(ⅰ)求數(shù)列的通項;
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和與前項和的大;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù),且),且數(shù)列是首項為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當時,求數(shù)列的前n項和。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
大學生自主創(chuàng)業(yè)已成為當代潮流。長江學院大三學生夏某今年一月初向銀行貸款20000元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年后一次還清貸款。已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經營,如此繼續(xù),假定每月月底該商品能全部賣出。
(1)設夏某第個月月底余元,第個月月底余元,寫出的值并建立與的遞推關系式;
(2)預計年底夏某還清銀行貸款后的純收入。(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(2)在數(shù)列中,是否存在連續(xù)三項成等差數(shù)列?若存在,求出所有符合條件的項;若不存在,請說明理由;
(3)若且,,求證:使得,,成等差數(shù)列的點列在某一直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com