己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn≤¨對(duì)恒成立,求實(shí)數(shù)的最小值.
(1)(2)
【解析】
試題分析:(1)求等差數(shù)列通項(xiàng)公式基本方法為待定系數(shù)法,即求出首項(xiàng)與公差即可,將題中兩個(gè)條件:
前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列轉(zhuǎn)化為關(guān)于首項(xiàng)與公差的方程組解出即得,(2)本題先求數(shù)列的前n項(xiàng)和,這可利用裂項(xiàng)相消法,得到 ,然后對(duì)恒成立問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,即分離變量為對(duì)恒成立,所以,從而轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)最值,因?yàn)?/span>,所以
試題解析:(1)設(shè)公差為d.由已知得 3分
解得,所以 6分
(2),
9分
對(duì)恒成立,即對(duì)恒成立
又
∴的最小值為 12分
考點(diǎn):等差數(shù)列通項(xiàng),裂項(xiàng)相消求和,不等式恒成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
anan+1 |
1 |
16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
anan+1 |
1 |
λ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省八市高三下學(xué)期3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn≤¨對(duì)恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和,且成等比.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)為數(shù)列的前n項(xiàng)和,若對(duì)一切恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com